论文标题
关于二阶载体序列的阳性和最小性
On Positivity and Minimality for Second-Order Holonomic Sequences
论文作者
论文摘要
实数的无限序列$ \ langle {u_n} \ rangle_ {n \ in \ mathbb {n}} $的实数是自动的(也称为p-recursive或p-finite),如果它可以满足与多项式系数的线性恢复关系。如果每个$ u_n \ geq 0 $,则这样的序列是积极的,如果给出了任何其他线性独立的序列$ \ langle {v_n} \ rangle_ {n \ in \ mathbb {n}} $满足相同的复发性关系,则比率$ $ u_n/v_n $ 0 $ 0。在本文中,我们专注于满足二阶复发$ g_3(n)u_n = g_2(n)u_ {n-1} + g_1(n)u_ {n-2} $的二阶复发序列,每个系数$ g_3,g_2,g_2,g_1 \ in \ _1 in \ n \ nathbb in \ ntrem of port of。我们建立了两个主要结果。首先,我们表明,确定此类序列的阳性减少了决定最小的。其次,我们证明,确定最小值等效于确定某些数值表达式(称为时期,指数期和周期样积分)是否等于零。周期和相关表达是代数几何学和数理论中的经典研究对象,并且几种已建立的猜想(尤其是Kontsevich和Zagier的猜想)意味着它们具有可确定的平等问题,这反过来又需要对大量的二阶自然序列的阳性性和最小程度的确定性。
An infinite sequence $\langle{u_n}\rangle_{n\in\mathbb{N}}$ of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each $u_n \geq 0$, and minimal if, given any other linearly independent sequence $\langle{v_n}\rangle_{n \in\mathbb{N}}$ satisfying the same recurrence relation, the ratio $u_n/v_n$ converges to $0$. In this paper, we focus on holonomic sequences satisfying a second-order recurrence $g_3(n)u_n = g_2(n)u_{n-1} + g_1(n)u_{n-2}$, where each coefficient $g_3, g_2,g_1 \in \mathbb{Q}[n]$ is a polynomial of degree at most $1$. We establish two main results. First, we show that deciding positivity for such sequences reduces to deciding minimality. And second, we prove that deciding minimality is equivalent to determining whether certain numerical expressions (known as periods, exponential periods, and period-like integrals) are equal to zero. Periods and related expressions are classical objects of study in algebraic geometry and number theory, and several established conjectures (notably those of Kontsevich and Zagier) imply that they have a decidable equality problem, which in turn would entail decidability of Positivity and Minimality for a large class of second-order holonomic sequences.