论文标题
低质量系外行星的热和轨道演变
Thermal and orbital evolution of low-mass exoplanets
论文作者
论文摘要
潮汐载外球星的热,轨道和旋转动力学通过复杂的反馈互连。地球的流变结构决定了其对潮汐变形的敏感性,因此参与了塑造其轨道的敏感性。相反,轨道参数和自旋状态控制潮汐耗散的速率,并可能导致内部发生实质性变化。我们研究了由Andrade粘弹性流变学控制的分化岩石外球星的耦合热轨道演变。耦合的演化通过半分析模型,1D参数化的传热和自我一致的潮汐耗散处理。首先,我们进行了几项参数研究,探讨了流变特性的影响,行星的大小以及轨道怪异对潮汐锁定和耗散的影响。这些测试表明,在低偏心轨道上,潮汐锁定到高自旋轨道共振中的作用最为突出,在低偏心轨道上,它的潮汐加热大大高于同步旋转。其次,我们计算了三个当前已知的低质量系外行星的长期演变,具有非零轨道偏心率,不存在或尚未知道的偏心率强迫(即GJ 625 B,GJ 411 B和Proxima Centauri B)。潮汐模型结合了稳定的岩浆海洋的形成和持续发展的自旋速率。我们发现,热状态受偏心态和自旋状态的演变的强烈影响,并且作为一系列热平衡而进行。最终将旋转旋转的倾向减慢了轨道的进化,并有助于保持长期稳定的轨道偏心。
Thermal, orbital, and rotational dynamics of tidally loaded exoplanets are interconnected by intricate feedback. The rheological structure of the planet determines its susceptibility to tidal deformation and, as a consequence, participates in shaping its orbit. The orbital parameters and the spin state, conversely, control the rate of tidal dissipation and may lead to substantial changes of the interior. We investigate the coupled thermal-orbital evolution of differentiated rocky exoplanets governed by the Andrade viscoelastic rheology. The coupled evolution is treated by a semi-analytical model, 1d parametrized heat transfer and self-consistently calculated tidal dissipation. First, we conduct several parametric studies, exploring the effect of the rheological properties, the planet's size, and the orbital eccentricity on the tidal locking and dissipation. These tests show that the role of tidal locking into high spin-orbit resonances is most prominent on low eccentric orbits, where it results in substantially higher tidal heating than the synchronous rotation. Second, we calculate the long-term evolution of three currently known low-mass exoplanets with nonzero orbital eccentricity and absent or yet unknown eccentricity forcing (namely GJ 625 b, GJ 411 b, and Proxima Centauri b). The tidal model incorporates the formation of a stable magma ocean and a consistently evolving spin rate. We find that the thermal state is strongly affected by the evolution of eccentricity and spin state and proceeds as a sequence of thermal equilibria. Final despinning into synchronous rotation slows down the orbital evolution and helps to maintain long-term stable orbital eccentricity.