论文标题

球形背景周围轴向对称和轴心二阶扰动的尺寸固定和规律性

Gauge fixing and regularity of axially symmetric and axistationary second order perturbations around spherical backgrounds

论文作者

Mars, Marc, Reina, Borja, Vera, Raül

论文摘要

引力的几何理论中的扰动理论是在Lorentzian歧管(背景时空)上定义的对称张量的规格理论。仪表自由在扰动理论中尤其困难地使其成为唯一性问题,因为人们需要在尝试任何唯一性证明之前需要深入了解量规修复的过程。这是两者中的第一篇论文,旨在得出刚性旋转的恒星的存在和独特性结果,以在一般相对论中扰动理论中的二阶。一个必要的步骤是显示出合适的量规选择,并以某些“规范形式”,尤其是在恒星的中心中了解所得量规张量的可不同性和规则性能。考虑到更广泛的应用程序,在本文中,我们在更一般的环境中分析了固定和规律性问题。特别是,我们将霍奇型分解为对称和轴向对称张量的球体上的标量,矢量和张量成分的问题,而有限的不同性能降至起源,从而利用了一种损失不同的策略,在这种策略中,丧失了可区分性的损失尽可能低。我们的主要兴趣和主要结果是证明静态和对称的二阶二阶扰动围绕静态和球形对称背景配置确实可以在文献中使用的通常的“规范形式”中渲染,同时仅丢失了一个不同的可区分性,并使所有相关数量保持在原点附近。

Perturbation theory in geometric theories of gravitation is a gauge theory of symmetric tensors defined on a Lorentzian manifold (the background spacetime). The gauge freedom makes uniqueness problems in perturbation theory particularly hard as one needs to understand in depth the process of gauge fixing before attempting any uniqueness proof. This is the first paper of a series of two aimed at deriving an existence and uniqueness result for rigidly rotating stars to second order in perturbation theory in General Relativity. A necessary step is to show the existence of a suitable choice of gauge and to understand the differentiability and regularity properties of the resulting gauge tensors in some "canonical form", particularly at the centre of the star. With a wider range of applications in mind, in this paper we analyse the fixing and regularity problem in a more general setting. In particular we tackle the problem of the Hodge-type decomposition into scalar, vector and tensor components on spheres of symmetric and axially symmetric tensors with finite differentiability down to the origin, exploiting a strategy in which the loss of differentiability is as low as possible. Our primary interest, and main result, is to show that stationary and axially symmetric second order perturbations around static and spherically symmetric background configurations can indeed be rendered in the usual "canonical form" used in the literature while loosing only one degree of differentiability and keeping all relevant quantities bounded near the origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源