论文标题

幻觉显着图,用于有限数据域的细粒度图像分类

Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains

论文作者

Figueroa-Flores, Carola, Raducanu, Bogdan, Berga, David, van de Weijer, Joost

论文摘要

评估了大多数显着性方法的生成显着图图的能力,而不是在完整视觉管道中的功能上,例如图像分类。在当前的论文中,我们提出了一种方法,该方法不需要明显的显着图来改善图像分类,但是在训练端到端图像分类任务期间,它们被隐含地学习。我们表明,我们的方法获得的结果与明确提供显着性图的情况相似。将RGB数据与显着图相结合是对象识别的重要优势,尤其是在训练数据受到限制的情况下。我们在几个数据集上验证我们的方法进行细粒度的分类任务(花,鸟和汽车)。此外,我们表明我们的显着估计方法是在没有任何显着地面数据的情况下进行训练的,它在真实的图像显着基准(多伦多)上获得了竞争结果,并且超出了具有合成图像(SID4VAM)的深层显着性模型。

Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源