论文标题
组织病理学图像的污渍样式转移通过结构保存的生成学习
Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning
论文作者
论文摘要
计算组织病理学图像诊断变得越来越流行和重要,其中图像被分割或分类用于计算机诊断。尽管病理学家在幻灯片的颜色变化中并不困难,但计算解决方案通常会遇到这个关键问题。为了解决组织病理学图像中颜色变化的问题,本研究提出了基于生成的对抗网络的两个染色样式转移模型,即SSIM-GAN和DSCSI-GAN。通过在学习中协作结构保存指标和辅助诊断网的反馈,以图像纹理,结构和色度对比度提供的医学相关信息可以保留在颜色归一化图像中。特别是,在我们的DSCSI-GAN模型中,色彩图像含量的智能处理有助于在图像区域中明显改善,在图像区域中,由于组织学物质共定位而引起的污渍混合。公共组织病理学图像集的广泛实验表明,我们的方法在产生更多的污渍图像,更好地保存图像中的组织学信息并获得明显更高的学习效率方面优于先前的艺术。我们的Python实施发表在https://github.com/hanwen0529/dscsi-gan上。
Computational histopathology image diagnosis becomes increasingly popular and important, where images are segmented or classified for disease diagnosis by computers. While pathologists do not struggle with color variations in slides, computational solutions usually suffer from this critical issue. To address the issue of color variations in histopathology images, this study proposes two stain style transfer models, SSIM-GAN and DSCSI-GAN, based on the generative adversarial networks. By cooperating structural preservation metrics and feedback of an auxiliary diagnosis net in learning, medical-relevant information presented by image texture, structure, and chroma-contrast features is preserved in color-normalized images. Particularly, the smart treat of chromatic image content in our DSCSI-GAN model helps to achieve noticeable normalization improvement in image regions where stains mix due to histological substances co-localization. Extensive experimentation on public histopathology image sets indicates that our methods outperform prior arts in terms of generating more stain-consistent images, better preserving histological information in images, and obtaining significantly higher learning efficiency. Our python implementation is published on https://github.com/hanwen0529/DSCSI-GAN.