论文标题

Murtree:通过动态编程和搜索的最佳分类树

MurTree: Optimal Classification Trees via Dynamic Programming and Search

论文作者

Demirović, Emir, Lukina, Anna, Hebrard, Emmanuel, Chan, Jeffrey, Bailey, James, Leckie, Christopher, Ramamohanarao, Kotagiri, Stuckey, Peter J.

论文摘要

决策树学习是机器学习中广泛使用的方法,在需要简洁且可解释的模型的应用中受到青睐。传统上,启发式方法用于快速生产具有相当高准确性的模型。但是,一个普遍的批评是,从精度和大小方面,所产生的树可能不一定是数据的最佳表示。近年来,这促使了最佳分类树算法的发展,这些算法与执行一系列本地最佳决策的启发式方法相比,在全球范围内优化决策树。我们遵循这一工作线,并提供了一种基于动态编程和搜索的最佳分类树的新颖算法。我们的算法支持对树的深度和节点数量的约束。我们方法的成功归因于一系列专业技术,这些技术利用了分类树独有的属性。传统上,最佳分类树的算法受到了高运行时的困扰和有限的可伸缩性的困扰,但我们在一项详细的实验研究中表明,我们的方法仅使用最先进的时间所需的一小部分时间,并且可以处理数万个实例的数据集,并具有数以万计的实例,从而为实践树而实现了多个范围的改进,并为实践树提供了最佳的实践树。

Decision tree learning is a widely used approach in machine learning, favoured in applications that require concise and interpretable models. Heuristic methods are traditionally used to quickly produce models with reasonably high accuracy. A commonly criticised point, however, is that the resulting trees may not necessarily be the best representation of the data in terms of accuracy and size. In recent years, this motivated the development of optimal classification tree algorithms that globally optimise the decision tree in contrast to heuristic methods that perform a sequence of locally optimal decisions. We follow this line of work and provide a novel algorithm for learning optimal classification trees based on dynamic programming and search. Our algorithm supports constraints on the depth of the tree and number of nodes. The success of our approach is attributed to a series of specialised techniques that exploit properties unique to classification trees. Whereas algorithms for optimal classification trees have traditionally been plagued by high runtimes and limited scalability, we show in a detailed experimental study that our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances, providing several orders of magnitude improvements and notably contributing towards the practical realisation of optimal decision trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源