论文标题

Lieb-Liniger模型的非平衡稳态:tonks Girardeau限制的精确处理

Non-Equilibrium Steady State of the Lieb-Liniger model: exact treatment of the Tonks Girardeau limit

论文作者

Sotiriadis, Spyros

论文摘要

旨在通过精确的分析方法研究量子整合模型中非平衡稳态(NESS)的出现,我们着重于Lieb-Liniger模型的Tonks-Girardeau或硬核玻色子极限。我们认为气体从一半到整个限制框的突然扩展,这是一种典型的不均匀淬灭的情况,也称为“几何淬灭”。基于淬灭重叠的确切计算,我们通过严格处理热力学以及较大的时间和距离极限来开发一种分析方法来推导NESS。我们的方法基于复杂的分析工具,用于衍生多体波函数的渐近学,并不能对硬核玻色子气体的有效非相互作用特征进行必不可少的利用,并且足以对真实相互作用的情况充分概括。

Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt expansion of a gas from one half to the entire confining box, a prototypical case of inhomogeneous quench, also known as "geometric quench". Based on the exact calculation of quench overlaps, we develop an analytical method for the derivation of the NESS by rigorously treating the thermodynamic and large time and distance limit. Our method is based on complex analysis tools for the derivation of the asymptotics of the many-body wavefunction, does not make essential use of the effectively non-interacting character of the hard-core boson gas and is sufficiently robust for generalisation to the genuinely interacting case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源