论文标题

零边界处的对称性:两个和三维重力案例

Symmetries at Null Boundaries: Two and Three Dimensional Gravity Cases

论文作者

Adami, H., Sheikh-Jabbari, M. M., Taghiloo, V., Yavartanoo, H., Zwikel, C.

论文摘要

我们以完全的通用性进行,而没有固定特定的边界条件,在两维(2D和3D)重力理论的通用无效表面附近的对称和电荷分析。在2D和3D中,分别有两个和三个电荷,这些电荷是编成一个无效表面上的通用函数。电荷及其代数的集成性取决于对称发生器的状态依赖性,而对称发生器的状态依赖性未指定。我们确定了许多选择使表面充电可集成的选择的存在。我们表明,有一个选择,即“基本基础”,其中无效边界对称代数是Heisenberg+diff(d-2)代数。我们希望,当通过空表面没有邦迪新闻时,对于d> 3,这个结果将是正确的。

We carry out in full generality and without fixing specific boundary conditions, the symmetry and charge analysis near a generic null surface for two and three dimensional (2d and 3d) gravity theories. In 2d and 3d there are respectively two and three charges which are generic functions over the codimension one null surface. The integrability of charges and their algebra depend on the state-dependence of symmetry generators which is a priori not specified. We establish the existence of infinitely many choices that render the surface charges integrable. We show that there is a choice, the "fundamental basis", where the null boundary symmetry algebra is the Heisenberg+Diff(d-2) algebra. We expect this result to be true for d>3 when there is no Bondi news through the null surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源