论文标题

数据驱动的建筑布局以提高能源效率

Data-driven optimization of building layouts for energy efficiency

论文作者

Sonta, Andrew, Dougherty, Thomas R., Jain, Rishee K.

论文摘要

建立能量性能的主要驱动因素之一是乘员行为动态。结果,建筑乘员工作站的布局可能会影响能源消耗。在本文中,我们介绍了将照明区能量与区域级乘员动态联系起来的方法,基于这种关系模拟了照明系统的能量消耗,并通过使用基于聚类的方法和遗传算法来优化建筑物的布局,以减少能源消耗。我们在一项案例研究中发现,乘员日程安排中的非均匀行为(即高度多样性)与高度可控的照明系统的能源消耗正相关。我们还通过数据驱动的模拟发现,与由165名占用者组成的真实办公空间的现有布局相比,基于幼稚的基于聚类的优化和遗传算法(利用能量模拟引擎)会产生大约5%的布局。总体而言,这项研究证明了利用现有建筑布局的低成本动态设计作为减少能源使用的手段的优点。我们的工作为通过新的非资本密集型干预措施提供了在建筑环境中实现我们的可持续能源目标的额外途径。

One of the primary driving factors in building energy performance is occupant behavioral dynamics. As a result, the layout of building occupant workstations is likely to influence energy consumption. In this paper, we introduce methods for relating lighting zone energy to zone-level occupant dynamics, simulating energy consumption of a lighting system based on this relationship, and optimizing the layout of buildings through the use of both a clustering-based approach and a genetic algorithm in order to reduce energy consumption. We find in a case study that nonhomogeneous behavior (i.e., high diversity) among occupant schedules positively correlates with the energy consumption of a highly controllable lighting system. We additionally find through data-driven simulation that the naïve clustering-based optimization and the genetic algorithm (which makes use of the energy simulation engine) produce layouts that reduce energy consumption by roughly 5% compared to the existing layout of a real office space comprised of 165 occupants. Overall, this study demonstrates the merits of utilizing low-cost dynamic design of existing building layouts as a means to reduce energy usage. Our work provides an additional path to reach our sustainable energy goals in the built environment through new non-capital-intensive interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源