论文标题

贝叶斯案例科克斯回归的贝叶斯框架:饮食流行病学的应用

A Bayesian framework for case-cohort Cox regression: application to dietary epidemiology

论文作者

Yiu, Andrew, Goudie, Robert J. B., Sharp, Stephen J., Newcombe, Paul J., Tom, Brian D. M.

论文摘要

Case-Ohort研究设计绕开了资源限制,通过收集某些昂贵的协变量仅为完整队列的一小部分。加权COX回归是用于分析COX模型中案例可行数据的最广泛使用的方法,但效率低下。基于多个插补和非参数最大似然的替代方法分别遭受不兼容和计算问题的影响。我们介绍了一个新型的贝叶斯框架,用于案例可行的考克斯回归,避免了上述问题。用户可以包含辅助变量,以帮助预测其选择的预测模型,而滋扰参数的模型是非参数指定和集成的。可以使用基于伪MCMC算法的程序进行后采样。该方法有效地缩放到我们的应用中所证明的大型,复杂的数据集:使用Epic-Norfolk研究研究饱和脂肪酸与2型糖尿病之间的关联。作为我们分析的一部分,我们还开发了一种新的方法来处理COX模型中的组成数据,与以前的研究相比,可获得更可靠和可解释的结果。通过广泛的模拟说明了我们方法的性能。可以在https://github.com/andrewyiu/bayes_cc上找到用于生成结果的代码。

The case-cohort study design bypasses resource constraints by collecting certain expensive covariates for only a small subset of the full cohort. Weighted Cox regression is the most widely used approach for analysing case-cohort data within the Cox model, but is inefficient. Alternative approaches based on multiple imputation and nonparametric maximum likelihood suffer from incompatibility and computational issues respectively. We introduce a novel Bayesian framework for case-cohort Cox regression that avoids the aforementioned problems. Users can include auxiliary variables to help predict the unmeasured expensive covariates with a prediction model of their choice, while the models for the nuisance parameters are nonparametrically specified and integrated out. Posterior sampling can be carried out using procedures based on the pseudo-marginal MCMC algorithm. The method scales effectively to large, complex datasets, as demonstrated in our application: investigating the associations between saturated fatty acids and type 2 diabetes using the EPIC-Norfolk study. As part of our analysis, we also develop a new approach for handling compositional data in the Cox model, leading to more reliable and interpretable results compared to previous studies. The performance of our method is illustrated with extensive simulations. The code used to produce the results in this paper can be found at https://github.com/andrewyiu/bayes_cc .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源