论文标题

源代码中设计模式挖掘的自动查询生成

Automated Query Generation for Design Pattern Mining in Source Code

论文作者

Poozhithara, Jeffy Jahfar, Asuncion, Hazeline U., Lagesse, Brent

论文摘要

识别源代码中已经存在的哪些设计模式可以帮助维护工程师更好地了解源代码,并确定是否可以满足新的要求。当前有针对采矿设计模式的技术,但是其中一些技术需要手动标记培训数据集或手动指定每种模式的规则或查询的工作。为了应对这一挑战,我们介绍了Model2Mine,这是一种通过解析UML图来自动生成SPARQL查询的技术,以确保适当地解决所有约束。我们讨论了Model2mine及其功能的潜在架构。我们的初始结果表明,Model2mine可以自动生成有关三种类型的设计模式(即创建,行为,结构)的查询,与手动生成的查询相比,具有略有性能的开销,并且与现有技术相比具有可比性或更高的精度。

Identifying which design patterns already exist in source code can help maintenance engineers gain a better understanding of the source code and determine if new requirements can be satisfied. There are current techniques for mining design patterns, but some of these techniques require tedious work of manually labeling training datasets, or manually specifying rules or queries for each pattern. To address this challenge, we introduce Model2Mine, a technique for automatically generating SPARQL queries by parsing UML diagrams, ensuring that all constraints are appropriately addressed. We discuss the underlying architecture of Model2Mine and its functionalities. Our initial results indicate that Model2Mine can automatically generate queries for the three types of design patterns (i.e., creational, behavioral, structural), with a slight performance overhead compared to manually generated queries, and accuracy that is comparable, or perform better than, existing techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源