论文标题

偏光天灯导航模拟(PSN)数据集

Polarized Skylight Navigation Simulation (PSNS) Dataset

论文作者

Liang, Huaju, Bai, Hongyang

论文摘要

随着越来越多的机器学习方法应用于生物启发的两极分化天窗导航,对偏光天灯导航数据集的需求越来越紧迫,可用于训练和测试机器学习方法。因此,在本文中,首次构建了一个开放的偏光天灯导航数据集。首先,提出了一个极化的天空模型,该模型是基于太阳位置模型,贝里天空模型和Hosek Sky模型,其中包含光强度(LI),极化程度(DOP)和极化角度(AOP)的信息。其次,构建了极化成像模拟系统,它不仅可以捕获LI,DOP和AOP图像,还可以在不同的极化方向上捕获原始的黑白LI图像。黑白LI图像是实际极化成像仪收集的原始数据,因此该系统可以完全描述捕获天窗极化模式的极化成像仪的整个过程。最重要的是,可以构建偏光天灯导航模拟(PSN)数据集。此外,为了促进研究人员根据自己的两极分化光传感器和天空模型构建自己的数据集,我们已经在Github上披露了极化成像仪和原始LI Imager的源代码。

With more and more machine learning methods applied to bioinspired polarized skylight navigation, the demand for polarized skylight navigation datasets is more and more urgent, which can be used to train and test machine learning methods. So, in this paper, an open polarized skylight navigation dataset is constructed for the first time. Firstly, a polarized sky model was proposed based on Sun position model, Berry sky model and Hosek sky model, which contains the information of the light intensity (LI), degree of polarization (DOP) and angle of polarization (AOP). Secondly, a polarization imaging simulation system is constructed, which can capture not only LI, DOP and AOP images, but also original black-and-white LI images in different polarization directions. Black-and-white LI images are the original data collected by actual polarization imager, so this system can completely describe the whole process of polarization imager capturing skylight polarization patterns. Above all, a polarized skylight navigation simulation (PSNS) dataset can be constructed. In addition, to facilitate researchers to build their own datasets based on their own polarized light sensors and sky models, we have disclosed the source code of polarization imager and original LI imager on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源