论文标题
陷阱填充对Mapbbr $ _3 $单晶载体扩散的影响
Impact of Trap Filling on Carrier Diffusion in MAPbBr$_3$ Single Crystals
论文作者
论文摘要
我们提供了实验证据表明,有效的载体扩散长度($ L_D $)和寿命($τ$)取决于Mapbbr $ _3 $单晶的载体密度。独立的测量结果表明,随着照片载体密度的增加,$ L_D $和$τ$都会减少。扫描光电流显微镜用于提取特征光电流$ i_ {pH} $衰减长度参数,$ l_d $,这是有效载体扩散的量度。电子和孔的$ L_D $大小确定为〜13.3 $μ$ m和〜13.8 $μ$ m。均匀的光偏置($ \ leq 5 \ times 10^{15} $ photons/cm $ $^2 $)的边缘增加可将调制的光电流幅度增加,并将$ L_D $参数减少为两个和三倍的电子和孔,表明重组不是单核的。 $ L_D $变化与光致发光寿命研究的特征相关。生命周期变化的分析显示了与强度依赖性单分子和双分子重组趋势,重组常数确定为〜9.3 $ \ times 10^6 $ s $ s $ s $^{ - 1} $和〜1.4 $ \ times 10^{ - 9} $ cm $ $ cm $^{3} $ s $ s $ s $ s $^{3} $ s $^{ - 1} $。根据$ L_D $和寿命的趋势,可以推断出子隙陷阱重组会影响低强度激发方案中的载体传输,而双分子重组和运输则以高强度为主导。
We present experimental evidence showing that the effective carrier diffusion length ($L_d$) and lifetime ($τ$) depend on the carrier density in MAPbBr$_3$ single crystals. Independent measurements reveal that both $L_d$ and $τ$ decrease with an increase in photo-carrier density. Scanning photocurrent microscopy is used to extract the characteristic photocurrent $I_{ph}$ decay-length parameter, $L_d$, which is a measure of effective carrier diffusion. The $L_d$ magnitudes for electrons and holes were determined to be ~ 13.3 $μ$m and ~ 13.8 $μ$m respectively. A marginal increase in uniform light bias ($\leq 5 \times 10^{15}$ photons/cm$^2$) increases the modulated photocurrent magnitude and reduces the $L_d$ parameter by a factor of two and three for electrons and holes respectively, indicating that the recombination is not monomolecular. The $L_d$ variations were correlated to the features in photoluminescence lifetime studies. Analysis of lifetime variation shows intensity-dependent monomolecular and bimolecular recombination trends with recombination constants determined to be ~ 9.3 $\times 10^6$ s$^{-1}$ and ~ 1.4 $\times 10^{-9}$ cm$^{3}$s$^{-1}$ respectively. Based on the trends of $L_d$ and lifetime, it is inferred that the sub-band-gap trap recombination influences carrier transport in the low-intensity excitation regime, while bimolecular recombination and transport dominate at high intensity.