论文标题
衍生品非线性schrödinger方程的先验估计值
A priori estimates for the derivative nonlinear Schrödinger equation
论文作者
论文摘要
我们证明,在BESOV空间中,在小$ l^2 $ -NORM的情况下,在BESOV空间中,对衍生物非线性Schrödinger方程的先验估计值很低。这涵盖了完整的亚临界范围。我们使用Killip-Vişan-Zhang引入的扰动决定因素的功率系列扩展,以完全可以集成的PDE。这使得从扰动决定因素中得出较低的规律性保护法。
We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index conditional upon small $L^2$-norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip--Vişan--Zhang for completely integrable PDE. This makes it possible to derive low regularity conservation laws from the perturbation determinant.