论文标题

用$ {\ Mathbb r}^d $定期系数的双曲程方程的均质化:结果的清晰度

Homogenization of hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: sharpness of the results

论文作者

Dorodnyi, Mark, Suslina, Tatiana

论文摘要

在$ l_2({\ Mathbb r}^d; {\ Mathbb c}^n)$中,一个自偏椭圆相关的第二阶二阶差异操作员$ {\ mathcal a} _ \ varepsilon $。假定运算符$ {\ Mathcal a} _ \ Varepsilon $的系数是定期的,并且取决于$ {\ Mathbf x}/\ Varepsilon $,其中$ \ varepsilon> 0 $是一个小参数。我们找到了操作员的近似值$ \ cos({\ Mathcal a} _ \ varepsilon^{1/2}τ)$和$ {\ Mathcal a} _ \ varepsilon^{ - 1/1/2} \ sin({\ Mathcal a} _} _ _ v varepsilon^under nord nord nord in nord in nord从sobolev space $ h^s({\ mathbb r}^d)$到$ l_2({\ mathbb r}^d)$(带有合适的$ s $)。我们还发现操作员的矫正器$ {\ mathcal a} _ \ varepsilon^{ - 1/2} \ sin({\ Mathcal a} _ \ varepsilon^{1/2}τ)in $(h^s \ to h^1)研究了有关结果相对于操作员规范的类型以及估计值对$τ$的依赖性的问题。结果适用于研究双曲程方程的解决方案的行为$ \partial_τ^2 {\ Mathbf u} _ \ varepsilon = - {\ Mathcal a} _ \ varepsilon {\ Varepsilon {

In $L_2({\mathbb R}^d;{\mathbb C}^n)$, a selfadjoint strongly elliptic second order differential operator ${\mathcal A}_\varepsilon$ is considered. It is assumed that the coefficients of the operator ${\mathcal A}_\varepsilon$ are periodic and depend on ${\mathbf x}/\varepsilon$, where $\varepsilon >0$ is a small parameter. We find approximations for the operators $\cos ( {\mathcal A}_\varepsilon^{1/2}τ)$ and ${\mathcal A}_\varepsilon^{-1/2}\sin ( {\mathcal A}_\varepsilon^{1/2}τ)$ in the norm of operators acting from the Sobolev space $H^s({\mathbb R}^d)$ to $L_2({\mathbb R}^d)$ (with suitable $s$). We also find approximation with corrector for the operator ${\mathcal A}_\varepsilon^{-1/2}\sin ( {\mathcal A}_\varepsilon^{1/2}τ)$ in the $(H^s \to H^1)$-norm. The question about the sharpness of the results with respect to the type of the operator norm and with respect to the dependence of estimates on $τ$ is studied. The results are applied to study the behavior of the solutions of the Cauchy problem for the hyperbolic equation $\partial_τ^2 {\mathbf u}_\varepsilon = - {\mathcal A}_\varepsilon {\mathbf u}_\varepsilon + {\mathbf F}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源