论文标题
弱监督分段的点对点距离功能
Point-to-set distance functions for weakly supervised segmentation
论文作者
论文摘要
当像素级面具或部分注释无法用于训练语义分割的神经网络时,可以以边界框或图像标签的形式使用更高级别的信息。在成像科学中,许多应用程序没有对象背景结构,并且没有边界框。任何可用的注释通常都来自地面真理或领域专家。没有口罩的训练的直接方法是使用分段中对象/类的大小的先验知识。我们提出了一种新算法,以通过网络输出的约束来包含此类信息,该信息通过基于投影的点对点距离函数实现。这种类型的距离函数始终具有相同的衍生功能形式,并避免了将惩罚函数适应不同约束的需要,以及与通常与非差异性功能相关的约束属性相关的问题。尽管已知对象大小信息可以从具有许多通用和医疗图像的数据集中的边界框中启用对象进行分割,但我们表明,即使在单个示例的情况下,应用程序扩展到了数据代表间接测量的成像科学。我们说明了a)一个或多个类没有任何注释的功能; b)根本没有注释; c)有边界框。我们使用数据用于高光谱的延时成像,损坏的图像中的对象分割以及从空气寄生地球物理遥感数据中的地下表面含水层映射。示例验证了开发的方法可以通过注释一系列实验环境的非视觉图像来减轻困难。
When pixel-level masks or partial annotations are not available for training neural networks for semantic segmentation, it is possible to use higher-level information in the form of bounding boxes, or image tags. In the imaging sciences, many applications do not have an object-background structure and bounding boxes are not available. Any available annotation typically comes from ground truth or domain experts. A direct way to train without masks is using prior knowledge on the size of objects/classes in the segmentation. We present a new algorithm to include such information via constraints on the network output, implemented via projection-based point-to-set distance functions. This type of distance functions always has the same functional form of the derivative, and avoids the need to adapt penalty functions to different constraints, as well as issues related to constraining properties typically associated with non-differentiable functions. Whereas object size information is known to enable object segmentation from bounding boxes from datasets with many general and medical images, we show that the applications extend to the imaging sciences where data represents indirect measurements, even in the case of single examples. We illustrate the capabilities in case of a) one or more classes do not have any annotation; b) there is no annotation at all; c) there are bounding boxes. We use data for hyperspectral time-lapse imaging, object segmentation in corrupted images, and sub-surface aquifer mapping from airborne-geophysical remote-sensing data. The examples verify that the developed methodology alleviates difficulties with annotating non-visual imagery for a range of experimental settings.