论文标题

因果动力学三角模型中动态分形几何形状的特性

Properties of dynamical fractal geometries in the model of Causal Dynamical Triangulations

论文作者

Ambjorn, J., Drogosz, Z., Görlich, A., Jurkiewicz, J.

论文摘要

我们研究了一个量子宇宙的几何形状,并以四道的拓扑结构进行了研究。对非裁定测量环的研究表明,典型的量子几何形状由一个小的半古典环形环形散装部分组成,穿着许多生长,其中包含大多数四卷,几乎具有球形拓扑,但绝对是分类的。

We investigate the geometry of a quantum universe with the topology of the four-torus. The study of non-contractible geodesic loops reveals that a typical quantum geometry consists of a small semi-classical toroidal bulk part, dressed with many outgrowths, which contain most of the four-volume and which have almost spherical topologies, but nevertheless are quite fractal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源