论文标题
XCAT-GAN用于合成3D一致标记的心脏MR图像在解剖上可变的XCAT幻象上
XCAT-GAN for Synthesizing 3D Consistent Labeled Cardiac MR Images on Anatomically Variable XCAT Phantoms
论文作者
论文摘要
生成对抗网络(GAN)通过综合高保真图像提供了有希望的数据丰富解决方案。但是,生成具有新的解剖变化的大型标记图像尚未探索。我们提出了一种使用4D扩展心脏和躯干(XCAT)计算机化的人幻象引入的具有较大解剖学变异的虚拟受试者人群中的心脏磁共振(CMR)图像的新方法。我们研究了建立在语义上一致的面具引导的图像生成技术的两种条件图像合成方法:4级和8级XCAT-GAN。 4级技术仅依靠心脏的注释;虽然8级技术采用了预测的心跳器官的多组织标签图,并为我们的条件图像合成提供了更好的指导。对于这两种技术,我们都会训练条件XCAT-GAN,其真实图像与相应的标签配对,然后在推理时间训练,我们用XCAT派生的标签代替标签。因此,训练有素的网络将组织特异性纹理准确地转移到新标签图。通过在末期和末期阶段创建33个合成CMR图像的虚拟主题,我们评估了在不同的增强策略下下游心脏空腔分割任务中此类数据的有用性。结果表明,即使在训练过程中只有20%的真实图像(40卷),也可以通过添加合成CMR图像来保留分割性能。此外,通过降低Hausdorff距离高达28%的距离和骰子得分的提高可显而易见,在利用合成图像来增强实际数据方面的改进是可以明显看出的,在所有维度中,与地面真相的相似性都更高。
Generative adversarial networks (GANs) have provided promising data enrichment solutions by synthesizing high-fidelity images. However, generating large sets of labeled images with new anatomical variations remains unexplored. We propose a novel method for synthesizing cardiac magnetic resonance (CMR) images on a population of virtual subjects with a large anatomical variation, introduced using the 4D eXtended Cardiac and Torso (XCAT) computerized human phantom. We investigate two conditional image synthesis approaches grounded on a semantically-consistent mask-guided image generation technique: 4-class and 8-class XCAT-GANs. The 4-class technique relies on only the annotations of the heart; while the 8-class technique employs a predicted multi-tissue label map of the heart-surrounding organs and provides better guidance for our conditional image synthesis. For both techniques, we train our conditional XCAT-GAN with real images paired with corresponding labels and subsequently at the inference time, we substitute the labels with the XCAT derived ones. Therefore, the trained network accurately transfers the tissue-specific textures to the new label maps. By creating 33 virtual subjects of synthetic CMR images at the end-diastolic and end-systolic phases, we evaluate the usefulness of such data in the downstream cardiac cavity segmentation task under different augmentation strategies. Results demonstrate that even with only 20% of real images (40 volumes) seen during training, segmentation performance is retained with the addition of synthetic CMR images. Moreover, the improvement in utilizing synthetic images for augmenting the real data is evident through the reduction of Hausdorff distance up to 28% and an increase in the Dice score up to 5%, indicating a higher similarity to the ground truth in all dimensions.