论文标题

颤抖和颤抖的基因座的平等

Equality of the wobbly and shaky loci

论文作者

Peón-Nieto, Ana

论文摘要

令$ x $为属$ g \ geq 2 $的平滑复杂的投影曲线。我们证明,$ x $上的$ x $上的抛物线矢量捆绑$ \ Mathcal {e} $是(非常)摇晃的,即$ \ $ \ Mathcal {e} $具有非零(强烈的)抛物面的抛物面nilpotent nilpotent nilpotent higgs field,并且仅在(强烈)(强度)的情况下,它是正确的。从(强)抛物线Higgs模量到抛物线束模量空间的理性图,都假定为光滑。这解决了Donagi-Pantev [DP1]在抛物线和矢量束上下文中的猜想。为此,我们证明了非常稳定的抛物线束的稳定性,以及抛物线束非常稳定的标准。

Let $X$ be a smooth complex projective curve of genus $g\geq 2$. We prove that a parabolic vector bundle $\mathcal{E}$ on $X$ on $X$ is (strongly) wobbly, i.e. $\mathcal{E}$ has a non-zero (strongly) parabolic nilpotent Higgs field, if and only if it is (strongly) shaky, i.e., it is in the image of the exceptional divisor of a suitable resolution of the rational map from the (strongly) parabolic Higgs moduli to the parabolic bundle moduli space, both assumed to be smooth. This solves a conjecture by Donagi-Pantev [DP1] in the parabolic and the vector bundle context. To this end, we prove the stability of strongly very stable parabolic bundles, and criteria for very stability of parabolic bundles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源