论文标题
无线电访问技术通过对象检测表征
Radio Access Technology Characterisation Through Object Detection
论文作者
论文摘要
\ ac {rat}分类和监视对于共享频谱中不同通信系统的有效共存至关重要。共享频谱,包括在\ ac {5g}标准中设想的,包括许可证 - 豁免频段的操作(例如,3GPPRel。16)。在本文中,我们提出了一种\ ac {ml}的方法来表征光谱利用率并促进动态访问它。 \ acp {CNN}的最新进展使我们能够通过处理频谱图作为图像来执行波形分类。与其他只能提供受监视的\ acp {rat}类的类别的\ ac {ml}方法相反,我们提出的解决方案不仅可以识别共享频谱中的不同\ acp {rat},还可以识别关键参数,以及识别诸如框架间持续时间,帧持续时间,中心频率,中心频率,中心频率和通过对象检测功能的特征来提取范围诸如范围间的持续时间和信号的谱图,以使用对象检测和提取特征。我们已经使用商业传输数据集以及在\ ac {sdr}测试床环境中实施并评估了解决方案。评估的方案是共享频谱中WiFi和LTE传输的共存。我们的结果表明,我们的方法的精度为96 \%在\ acp {rat}的分类中,从捕获常规用户通信的传输的数据集中的精度为96 \%。它还表明,提取的特征可以在2 \%的余量(占图像大小的%)内精确,并且能够在较大的传输功率水平和干扰条件下检测到94 \%的对象以上的对象。
\ac{RAT} classification and monitoring are essential for efficient coexistence of different communication systems in shared spectrum. Shared spectrum, including operation in license-exempt bands, is envisioned in the \ac{5G} standards (e.g., 3GPP Rel. 16). In this paper, we propose a \ac{ML} approach to characterise the spectrum utilisation and facilitate the dynamic access to it. Recent advances in \acp{CNN} enable us to perform waveform classification by processing spectrograms as images. In contrast to other \ac{ML} methods that can only provide the class of the monitored \acp{RAT}, the solution we propose can recognise not only different \acp{RAT} in shared spectrum, but also identify critical parameters such as inter-frame duration, frame duration, centre frequency, and signal bandwidth by using object detection and a feature extraction module to extract features from spectrograms. We have implemented and evaluated our solution using a dataset of commercial transmissions, as well as in a \ac{SDR} testbed environment. The scenario evaluated was the coexistence of WiFi and LTE transmissions in shared spectrum. Our results show that our approach has an accuracy of 96\% in the classification of \acp{RAT} from a dataset that captures transmissions of regular user communications. It also shows that the extracted features can be precise within a margin of 2\%, %of the size of the image, and is capable of detect above 94\% of objects under a broad range of transmission power levels and interference conditions.