论文标题

非零空间形式中的四个维度双旋转曲面具有恒定的平均曲率

Four dimensional biharmonic hypersurfaces in nonzero space form have constant mean curvature

论文作者

Guan, Zhida, Li, Haizhong, Vrancken, Luc

论文摘要

在本文中,通过仔细分析高斯和Codazzi方程,我们证明了非零空间形式中的四个维度双向曲面具有恒定的平均曲率。我们的结果给出了Balmus-Montaldo-onisiuc在2008年提出的四个维度曲面提出的猜想的积极答案。

In this paper, through making careful analysis of Gauss and Codazzi equations, we prove that four dimensional biharmonic hypersurfaces in nonzero space form have constant mean curvature. Our result gives the positive answer to the conjecture proposed by Balmus-Montaldo-Oniciuc in 2008 for four dimensional hypersurfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源