论文标题

在天线复合物的驱动量子模拟器中,多重激发歧管的作用

The role of the multiple excitation manifold in a driven quantum simulator of an antenna complex

论文作者

Chin, A. W., Dé, B. Le, Mangaud, E., Atabek, O., Desouter-Lecomte, M.

论文摘要

生物分子的轻度收获天线在一个纳米级设备中运行,在一个体制中,单个光,物质和振动量子的相干相互作用在非扰动上是强烈的。如果充分理解,则可以为无数的能源应用而产生的复杂行为。然而,非扰动动力学在计算上是模拟的挑战,并且在生物材料上进行实验探索了非扰动参数空间的非常有限的区域。所谓的轻度收获模型的“量子模拟器”可以为此问题提供解决方案,在这里,我们采用运动技术的层次方程来调查poto {boto {bik $ \ iT {et} $ $ $ $ \ $ \ \ it {al。通过明确包含光学驱动场的作用,非扰动驱动噪声以及三Q量量子电路的全部多激发希尔伯特空间,我们预测这些因素对传递效率的可测量影响。通过分析网络的特征光谱,我们发现了能量水平的结构,该结构使网络可以利用光学“暗”状态和激发态吸收能量传递。我们还确认,即使在驾驶和光场的强,非添加的作用下,也可以在实验上观察到可抗时的相干振荡。

Biomolecular light-harvesting antennas operate as nanoscale devices in a regime where the coherent interactions of individual light, matter and vibrational quanta are non-perturbatively strong. The complex behaviour arising from this could, if fully understood, be exploited for myriad energy applications. However, non-perturbative dynamics are computationally challenging to simulate, and experiments on biomaterials explore very limited regions of the non-perturbative parameter space. So-called `quantum simulators' of light-harvesting models could provide a solution to this problem, and here we employ the hierarchical equations of motion technique to investigate recent superconducting experiments of Poto{č}nik $\it{et}$ $\it{al.}$ (Nat. Com. 9, 904 (2018)) used to explore excitonic energy capture. By explicitly including the role of optical driving fields, non-perturbative dephasing noise and the full multi-excitation Hilbert space of a three-qubit quantum circuit, we predict the measureable impact of these factors on transfer efficiency. By analysis of the eigenspectrum of the network, we uncover a structure of energy levels that allows the network to exploit optical `dark' states and excited state absorption for energy transfer. We also confirm that time-resolvable coherent oscillations could be experimentally observed, even under strong, non-additive action of the driving and optical fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源