论文标题

相互作用的混沌系统中的线性和对数纠缠产生

Linear and logarithmic entanglement production in an interacting chaotic system

论文作者

Paul, Sanku, Bäcker, Arnd

论文摘要

我们研究了一对耦合的踢旋翼的纠缠生长。对于弱耦合,发现纠缠熵的生长最初是线性的,然后是对数生长。我们通过分析计算纠缠熵改变其轮廓的时间,并与数值结果达成很好的一致性。我们进一步表明,纠缠增长的不同制度与转子所显示的能量增长率不同。在很大程度上,能量扩散地增长,之前是中间动力学定位。中间动力学定位的时间跨度随着耦合强度的增加而降低。我们认为,观察到的扩散能量生长是一个转子充当另一个毁灭连贯性的环境的结果。我们表明,连贯性的衰减最初是指数级的,然后是幂律。

We investigate entanglement growth for a pair of coupled kicked rotors. For weak coupling, the growth of the entanglement entropy is found to be initially linear followed by a logarithmic growth. We calculate analytically the time after which the entanglement entropy changes its profile, and a good agreement with the numerical result is found. We further show that the different regimes of entanglement growth are associated with different rates of energy growth displayed by a rotor. At a large time, energy grows diffusively, which is preceded by an intermediate dynamical localization. The time-span of intermediate dynamical localization decreases with increasing coupling strength. We argue that the observed diffusive energy growth is the result of one rotor acting as an environment to the other which destroys the coherence. We show that the decay of the coherence is initially exponential followed by a power-law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源