论文标题
合作增强的混合轻型传感器的精度
Cooperatively-enhanced precision of hybrid light-matter sensors
论文作者
论文摘要
我们将物质和光的混合系统视为一种传感手段,并量化了合作效应的作用。后者通常会提高可以测量有效光耦合常数的修改的精度。特别是,考虑到与单个电磁模式相结合的$ n $ Qubits的基本模型,我们表明,精确度的最终框架显示了双Heisenberg缩放:$δθ\ proptoto1/(nn)$,$ n $ and $ n $和$ n $ and $ n $是Qubits和Qubits和Qubits和Qubits和photons的数量。此外,即使使用经典状态并仅测量一个子系统,也达到了Heisenberg-times-shot-noise缩放,即$ 1/(n \ sqrt {n})$或$ 1/(n \ sqrt {n})$。作为应用程序,我们表明,光腔内被困在双孔电势中的bose-Einstein冷凝物可以检测引力加速度$ g $,其相对精度为$ΔG/g \ simeq10^{ - 9} { - 9} \ text \ text {hz}^{hz}^{ - 1/2} $。本研究中提出的分析方法考虑了光子通过腔体镜的泄漏,并允许确定当通过原子或光子上的测量值推断出$ g $时的灵敏度。
We consider a hybrid system of matter and light as a sensing device and quantify the role of cooperative effects. The latter generically enhance the precision with which modifications of the effective light-matter coupling constant can be measured. In particular, considering a fundamental model of $N$ qubits coupled to a single electromagnetic mode, we show that the ultimate bound for the precision shows double-Heisenberg scaling: $Δθ\propto1/(Nn)$, with $N$ and $n$ being the number of qubits and photons, respectively. Moreover, even using classical states and measuring only one subsystem, a Heisenberg-times-shot-noise scaling, i.e. $1/(N\sqrt{n})$ or $1/(n\sqrt{N})$, is reached. As an application, we show that a Bose-Einstein condensate trapped in a double-well potential within an optical cavity can detect the gravitational acceleration $g$ with the relative precision of $Δg/g\simeq10^{-9}\text{Hz}^{-1/2}$. The analytical approach presented in this study takes into account the leakage of photons through the cavity mirrors, and allows to determine the sensitivity when $g$ is inferred via measurements on atoms or photons.