论文标题
拓扑磁铁中的自旋轨量子杂质和量化
Spin-orbit quantum impurity and quantization in a topological magnet
论文作者
论文摘要
由单原子杂质引起的量子状态位于物理和材料科学的前沿。虽然已经在高温超导体和稀释磁性半导体中报道了这种状态,但在拓扑磁体中未探索,这些磁体可以具有自旋轨道可调性。在这里,我们使用自旋极化扫描隧道显微镜/光谱(STM/S)来研究拓扑磁铁CO3SN2S2中的工程量子杂质。我们发现,每个用杂质取代的人都引入了惊人的局部结合状态。我们系统的磁化探针表明,这种结合状态是旋转极化的,锁定为负轨道磁化。此外,相邻杂质的磁性结合状态相互作用以形成量化的轨道,表现出有趣的自旋轨道分裂,类似于拓扑费用线的分裂。我们的工作共同证明了单原子杂质在量子水平上具有强的自旋轨道效应,这表明非磁性杂质可以在拓扑磁铁中引入自旋轨道耦合的磁共振。
Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets.