论文标题

SER分析启用了旋转的差分解码和前向继电器网络

SER Analysis for SWIPT-Enabled Differential Decode-and-Forward Relay Networks

论文作者

Lu, Yuxin, Mow, Wai Ho

论文摘要

在本文中,我们分析了同时无线信息和功率传输(SWIPT)的符号错误率(SER)启用了三节点差分解析(DDF)继电器网络,该网络在继电器上采用了电源分配(PS)协议。使用非连锁差调制的使用消除了发送训练符号以估算所有网络节点的瞬时通道状态信息(CSI)的需求,因此与连贯的调制相比提高了功率效率。但是,最新的探测器(例如最大似然检测器(MLD)和近似MLD)尚未获得性能分析结果。现有作品依赖于蒙特卡洛模拟方法来显示最佳PS比率的存在,从而最大程度地减少了整个SER。在这项工作中,我们提出了一个与调制尺寸有关的近乎最佳检测器。我们得出近似的SER表达,并证明所提出的检测器达到了完整的多样性顺序。根据我们的表达,可以准确估计最佳PS比率,而无需任何蒙特卡洛模拟。我们还扩展了提出的检测器及其SER分析,用于采用继电器上的时间切换(TS)协议。仿真结果验证了我们所提出的检测器的有效性以及我们的SER的准确性,导致PS和TS协议的各种网络方案。

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state information (CSI) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the maximum-likelihood detector (MLD) and approximate MLD. Existing works rely on the Monte-Carlo simulation method to show the existence of an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an approximate SER expression and prove that the proposed detector achieves the full diversity order. Based on our expression, the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation. We also extend the proposed detector and its SER analysis for adopting the time switching (TS) protocol at the relay. Simulation results verify the effectiveness of our proposed detector and the accuracy of our SER results in various network scenarios for both PS and TS protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源