论文标题

在1D Anderson绝缘子中的宽扩散器随机开发:有限尺寸的缩放,Griffiths效果以及对多体定位的可能影响

Subdiffusion in a 1D Anderson insulator with random dephasing: Finite-size scaling, Griffiths effects, and possible implications for many-body localization

论文作者

Taylor, Scott Richard, Scardicchio, Antonello

论文摘要

我们研究具有随机定位的现场脱层的一维边界驱动的安德森绝缘子(带有现场障碍的XX自旋链),观察到从扩散到临界点的临界密度的转变到具有dephasing的临界点密度。该模型的目的是模仿激发通过(多体)绝缘区域或厄贡气泡的通过,因此为在无序的海森伯格模型中观察到的扩散 - 灌注过渡过渡提供了玩具模型[1]。我们还提出了参考文献中引入的导体和绝缘子的半经典模型的精确解决方案。 2,表现出扩散和延伸相,并且定性地再现了量子系统的结果。从扩散到细胞扩散时,这两个模型的临界特性都会用“ Griffiths效应”来解释。我们表明,有限尺寸的缩放量表来自三个特征长度的相互作用:一个与疾病(定位长度)相关,一个与dephasing相关,第三个与渗透问题定义了大型,稀有,绝缘区域的渗透问题。我们猜想,后者随着系统大小而对数生长,可能是因为在次要相互作用系统中尚未观察到典型的Griffiths效应的重尾电阻分布。

We study transport in a one-dimensional boundary-driven Anderson insulator (the XX spin chain with onsite disorder) with randomly positioned onsite dephasing, observing a transition from diffusive to subdiffusive spin transport below a critical density of sites with dephasing. This model is intended to mimic the passage of an excitation through (many-body) insulating regions or ergodic bubbles, therefore providing a toy model for the diffusion-subdiffusion transition observed in the disordered Heisenberg model [1]. We also present the exact solution of a semiclassical model of conductors and insulators introduced in Ref. 2, which exhibits both diffusive and subdiffusive phases, and qualitatively reproduces the results of the quantum system. The critical properties of both models, when passing from diffusion to subdiffusion, are interpreted in terms of "Griffiths effects". We show that the finite-size scaling comes from the interplay of three characteristic lengths: one associated with disorder (the localization length), one with dephasing, and the third with the percolation problem defining large, rare, insulating regions. We conjecture that the latter, which grows logarithmically with system size, may potentially be responsible for the fact that heavy-tailed resistance distributions typical of Griffiths effects have not been observed in subdiffusive interacting systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源