论文标题

基于节能雾气的医疗保健监测基础设施

Energy Efficient Fog based Healthcare Monitoring Infrastructure

论文作者

Isa, Ida Syafiza M., El-Gorashi, Taisir E. H., Musa, Mohamed O. I., Elmirghani, Jaafar M. H.

论文摘要

移动技术和云计算服务的最新进展激发了基于云的实时健康监测系统的发展。但是,将与健康相关的数据转移到云中有助于网络基础架构的负担,从而导致高潜伏期和增加的功耗。引入雾计算,以通过为用户提供服务来减轻这种负担。这项研究提出了一种基于千兆无源光学网络(GPON)访问网络的健康监测应用程序的新雾计算体系结构。使用混合整数线性编程(MILP)开发了节能雾计算(EEFC)模型,以优化网络边缘上的雾器设备的数量和位置,以处理和分析能源效率雾计算的健康数据。研究了EEFC模型以低数据速率和高数据速率健康应用的性能。该研究的结果表明,与中央云的常规处理和分析分别用于低数据速率应用和高数据速率应用程序相比,通过处理和分析雾的健康数据可获得36%和52%的总能源节省。我们还建立了实时的启发式方法。能源优化的雾计算(EOFC)启发式,能量消耗性能接近EEFC模型。此外,我们研究了设备闲置功耗和交通量的不同情况下的能源效率提高。

Recent advances in mobile technologies and cloud computing services have inspired the development of cloud-based real-time health monitoring systems. However, the transfer of health-related data to the cloud contributes to the burden on the networking infrastructures, leading to high latency and increased power consumption. Fog computing is introduced to relieve this burden by bringing services to the users proximity. This study proposes a new fog computing architecture for health monitoring applications based on a Gigabit Passive Optical Network (GPON) access network. An Energy-Efficient Fog Computing (EEFC) model is developed using Mixed Integer Linear Programming (MILP) to optimize the number and location of fog devices at the network edge to process and analyze the health data for energy-efficient fog computing. The performance of the EEFC model at low data rates and high data rates health applications is studied. The outcome of the study reveals that a total energy saving of 36% and 52% are attained via processing and analysis the health data at the fog in comparison to conventional processing and analysis at the central cloud for low data rate application and high data rate application, respectively. We also developed a real-time heuristic; Energy Optimized Fog Computing (EOFC) heuristic, with energy consumption performance approaching the EEFC model. Furthermore, we examined the energy efficiency improvements under different scenarios of devices idle power consumption and traffic volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源