论文标题

稀疏的sachdev-ye-kitaev模型,量子混乱和重力双重

Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals

论文作者

García-García, Antonio M., Jia, Yiyang, Rosa, Dario, Verbaarschot, Jacobus J. M.

论文摘要

我们研究了稀疏的Sachdev-Ye-Kitaev(Syk)模型,其中只有$ n $ \ sim k n $独立矩阵元素不是零的。我们确定最低$ k \ gtrsim 1 $,以使量子混乱通过级别统计分析发生。该区域的光谱密度以及较大的$ K $的频谱密度仍然由施瓦茨的密集SYK模型的预测给出,尽管具有重新归一化的参数。对于超出线性缩放的超出线性缩放的$ n $,非零矩阵元素数的$ n $也获得了类似的结果。这有很大的迹象表明,这是稀疏SYK模型仍然具有量子重力双重的最小连接性。我们还发现,由于稀疏性引起的光谱密度的矩与$ D $ dimensional HyperCube中的Parisi U(1)晶格量表理论的领先矩密度的矩与光谱密度的矩之间有着有趣的确切关系。在$ k \至1 $限制中,稀疏SYK模型的不同障碍实现显示出紧急的随机矩阵统计数据,对于固定的$ n $,可以在十倍方式的任何普遍性类别中。与随机矩阵统计的一致性仅限于短距离相关性,不超过几个级别的间距,尤其是在频谱的尾部。此外,在大多数疾病实现中,新兴的全球对称性略低于$ k $,从而产生$ 2^m $倍的退化光谱,其中$ m $是一个正整数。对于$ k = 3/4 $,我们观察到大量此类新兴的全球对称性,最高$ 2^8 $折叠光谱,$ n = 26 $。

We study a sparse Sachdev-Ye-Kitaev (SYK) model with $N$ Majoranas where only $\sim k N$ independent matrix elements are non-zero. We identify a minimum $k \gtrsim 1$ for quantum chaos to occur by a level statistics analysis. The spectral density in this region, and for a larger $k$, is still given by the Schwarzian prediction of the dense SYK model, though with renormalized parameters. Similar results are obtained for a beyond linear scaling with $N$ of the number of non-zero matrix elements. This is a strong indication that this is the minimum connectivity for the sparse SYK model to still have a quantum gravity dual. We also find an intriguing exact relation between the leading correction to moments of the spectral density due to sparsity and the leading $1/d$ correction of Parisi's U(1) lattice gauge theory in a $d$ dimensional hypercube. In the $k \to 1$ limit, different disorder realizations of the sparse SYK model show emergent random matrix statistics that for fixed $N$ can be in any universality class of the ten-fold way. The agreement with random matrix statistics is restricted to short range correlations, no more than a few level spacings, in particular in the tail of the spectrum. In addition, emergent discrete global symmetries in most of the disorder realizations for $k$ slightly below one give rise to $2^m$-fold degenerate spectra, with $m$ being a positive integer. For $k =3/4$, we observe a large number of such emergent global symmetries with a maximum $2^8$-fold degenerate spectra for $N = 26$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源