论文标题

永久运动:产生无限的人类运动

Perpetual Motion: Generating Unbounded Human Motion

论文作者

Zhang, Yan, Black, Michael J., Tang, Siyu

论文摘要

使用机器学习方法对人运动的建模已得到广泛研究。从本质上讲,这是一个时间序列建模问题,涉及预测一个人过去如何移动的方式。但是,现有方法通常具有很短的时间范围,可以预测到人类运动的几秒钟。在这里,我们专注于长期预测;也就是说,产生了合理的人类运动的长序列(潜在的无限)。此外,我们不依赖于很长的输入运动来进行调理,而是可以预测某人如何从单个姿势移动。这样的模型在图形(视频游戏和人群动画)和视觉(作为人类运动估算或数据集创建的先验)中有许多用途。为了解决这个问题,我们提出了一个模型,以生成非确定性的,\ textit {ever-trchanging},永久性的人类运动,其中全局轨迹和身体姿势是交叉条件的。我们介绍了一个新颖的KL-Divergence术语,具有隐式,未知的先验。我们使用白色噪声高斯过程的KL差异的重尾功能训练它,从而允许潜在的序列时间依赖性。我们执行系统的实验来验证其有效性,并发现它优于基线方法。

The modeling of human motion using machine learning methods has been widely studied. In essence it is a time-series modeling problem involving predicting how a person will move in the future given how they moved in the past. Existing methods, however, typically have a short time horizon, predicting a only few frames to a few seconds of human motion. Here we focus on long-term prediction; that is, generating long sequences (potentially infinite) of human motion that is plausible. Furthermore, we do not rely on a long sequence of input motion for conditioning, but rather, can predict how someone will move from as little as a single pose. Such a model has many uses in graphics (video games and crowd animation) and vision (as a prior for human motion estimation or for dataset creation). To address this problem, we propose a model to generate non-deterministic, \textit{ever-changing}, perpetual human motion, in which the global trajectory and the body pose are cross-conditioned. We introduce a novel KL-divergence term with an implicit, unknown, prior. We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency. We perform systematic experiments to verify its effectiveness and find that it is superior to baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源