论文标题

使用PDE限制的优化和大偏差理论的极端事件概率估算,并应用了海啸

Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with application to tsunamis

论文作者

Tong, Shanyin, Vanden-Eijnden, Eric, Stadler, Georg

论文摘要

我们提出并比较分析由涉及随机参数的复杂系统中极端事件的方法,在我们有兴趣量化系统解决方案标量功能高于阈值的概率的情况下。如果阈值很大,则此概率很小,并且其准确的估计是具有挑战性的。为了解决这个困难,我们将大偏差理论(LDT)的理论结果与PDE受限优化的数值工具融合在一起。我们的方法首先计算参数,该参数将LDT速率函数在导致极端事件的一组参数上最小化,并使用伴随方法来计算此速率函数的梯度。最小化器提供了有关极端事件机理的信息以及其概率的估计。然后,我们提出了一系列方法来完善这些估计,要么通过重要性采样或极端事件集的几何近似。为一般参数分布制定结果,并在高斯分布时提供详细的表达式。我们给出了理论和数值论点,表明我们的方法的性能对我们感兴趣的事件的极端不敏感。我们说明了我们的方法的应用,以量化在岸上极端海啸事件的可能性。海啸通常是由于地震期间海底海拔的突然,不可预测的变化引起的。我们将此更改建模为一个随机过程,它考虑了基础物理学。我们使用一维浅水方程来数字建模海啸。在此示例的背景下,我们对极端事件概率估计的方法进行了比较,并找到哪种类型的海底高度变化导致岸上最大的海啸。

We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源