论文标题

迈向认证多媒体内容的可靠模型:检测使用贝叶斯神经网络的重新采样伪像

Toward Reliable Models for Authenticating Multimedia Content: Detecting Resampling Artifacts With Bayesian Neural Networks

论文作者

Maier, Anatol, Lorch, Benedikt, Riess, Christian

论文摘要

在多媒体取证中,基于学习的方法在确定图像和视频的真实性方面提供了最先进的性能。但是,大多数现有的方法都受到分数范围数据的挑战,即具有培训集中未涵盖的特征。这使得很难知道何时信任模型,尤其是对于技术背景有限的从业者而言。 在这项工作中,我们迈出了重新设计法医算法的第一步,重点是可靠性。为此,我们建议使用贝叶斯神经网络(BNN),该神经网络将深神经网络的力量与贝叶斯框架的严格概率配方结合在一起。 BNN没有提供像标准神经网络这样的点估计,而是提供表达估计值和不确定性范围的分布。 我们演示了该框架对经典法医任务的有用性:重采样检测。 BNN产生了最先进的检测性能,并提供出色的检测分布样品的功能。这对于重采样检测,即看不见的重采样因子,看不见的JPEG压缩和看不见的重新采样算法的三个病理问题证明了这一点。我们希望该提案激发了对多媒体取证可靠性的进一步研究。

In multimedia forensics, learning-based methods provide state-of-the-art performance in determining origin and authenticity of images and videos. However, most existing methods are challenged by out-of-distribution data, i.e., with characteristics that are not covered in the training set. This makes it difficult to know when to trust a model, particularly for practitioners with limited technical background. In this work, we make a first step toward redesigning forensic algorithms with a strong focus on reliability. To this end, we propose to use Bayesian neural networks (BNN), which combine the power of deep neural networks with the rigorous probabilistic formulation of a Bayesian framework. Instead of providing a point estimate like standard neural networks, BNNs provide distributions that express both the estimate and also an uncertainty range. We demonstrate the usefulness of this framework on a classical forensic task: resampling detection. The BNN yields state-of-the-art detection performance, plus excellent capabilities for detecting out-of-distribution samples. This is demonstrated for three pathologic issues in resampling detection, namely unseen resampling factors, unseen JPEG compression, and unseen resampling algorithms. We hope that this proposal spurs further research toward reliability in multimedia forensics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源