论文标题
在移动边缘计算系统中,加速对可靠性 - 不合稳定客户的联盟学习
Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems
论文作者
论文摘要
包含云,边缘节点和最终设备的移动边缘计算(MEC)在使数据处理更接近数据源方面显示出很大的潜力。同时,联邦学习(FL)已成为一种有希望的保护隐私的方法来促进AI应用程序。但是,在与MEC架构集成时,优化FL的效率和有效性仍然是一个巨大的挑战。此外,终端设备的不可靠性(例如,散落者和间歇性辍学)显着减慢了FL过程,并影响了全球模型的质量XIN这种情况。在本文中,一种称为Hybridfl的多层联合学习协议是为MEC架构设计的。 Hybridfl采用模型聚合的两个级别(边缘水平和云水平)制定了不同的聚合策略。此外,为了减轻散乱者和最终设备的辍学,我们将区域松弛因子引入了使用概率方法在边缘节点进行的客户选择阶段,而无需识别或探测最终设备的状态(其可靠性是不可知的)。我们证明了我们方法在调节所选客户比例的有效性,并为我们的协议提供了收敛分析。我们已经对MEC系统不同尺度的机器学习任务进行了广泛的实验。结果表明,HybridFL在缩短联合圆形长度,加快全球模型的收敛性(最高12倍)并减少终端设备能量消耗(最高58%)方面可以显着改善FL训练过程。
Mobile Edge Computing (MEC), which incorporates the Cloud, edge nodes and end devices, has shown great potential in bringing data processing closer to the data sources. Meanwhile, Federated learning (FL) has emerged as a promising privacy-preserving approach to facilitating AI applications. However, it remains a big challenge to optimize the efficiency and effectiveness of FL when it is integrated with the MEC architecture. Moreover, the unreliable nature (e.g., stragglers and intermittent drop-out) of end devices significantly slows down the FL process and affects the global model's quality Xin such circumstances. In this paper, a multi-layer federated learning protocol called HybridFL is designed for the MEC architecture. HybridFL adopts two levels (the edge level and the cloud level) of model aggregation enacting different aggregation strategies. Moreover, in order to mitigate stragglers and end device drop-out, we introduce regional slack factors into the stage of client selection performed at the edge nodes using a probabilistic approach without identifying or probing the state of end devices (whose reliability is agnostic). We demonstrate the effectiveness of our method in modulating the proportion of clients selected and present the convergence analysis for our protocol. We have conducted extensive experiments with machine learning tasks in different scales of MEC system. The results show that HybridFL improves the FL training process significantly in terms of shortening the federated round length, speeding up the global model's convergence (by up to 12X) and reducing end device energy consumption (by up to 58%).