论文标题

复杂动量的带电流体中的准模式

Quasinormal modes in charged fluids at complex momentum

论文作者

Jansen, Aron, Pantelidou, Christiana

论文摘要

我们研究了全息框架内带电流体中相对论流体动力学的收敛。一方面,我们考虑了流体动力模式在复杂频率和动量平面上的分散性关系的分析特性,另一方面,我们在很高的时间内执行了小动量分散关系的扰动扩展。我们看到,使用第一种方法提取的分支点的位置与扰动提取的收敛半径符合定量一致。我们看到,对于电荷的不同值,不同类型的极点碰撞设置了收敛的半径。在所有流体动力模式的中性情况下,后者是有限的,而剪切和声音模式的极端性为零。此外,我们还为Reissner-Nordstrom黑洞建立了杆子的现象,我们发现这种现象发生的动量的值不必在流体动力学收敛的半径内。

We investigate the convergence of relativistic hydrodynamics in charged fluids, within the framework of holography. On the one hand, we consider the analyticity properties of the dispersion relations of the hydrodynamic modes on the complex frequency and momentum plane and on the other hand, we perform a perturbative expansion of the dispersion relations in small momenta to a very high order. We see that the locations of the branch points extracted using the first approach are in good quantitative agreement with the radius of convergence extracted perturbatively. We see that for different values of the charge, different types of pole collisions set the radius of convergence. The latter turns out to be finite in the neutral case for all hydrodynamic modes, while it goes to zero at extremality for the shear and sound modes. Furthermore, we also establish the phenomenon of pole-skipping for the Reissner-Nordstrom black hole, and we find that the value of the momentum for which this phenomenon occurs need not be within the radius of convergence of hydrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源