论文标题

关于离散分布的量子与经典可学习性

On the Quantum versus Classical Learnability of Discrete Distributions

论文作者

Sweke, Ryan, Seifert, Jean-Pierre, Hangleiter, Dominik, Eisert, Jens

论文摘要

在这里,我们研究了经典和量子学习者的比较能力,以实现可能在近似正确(PAC)框架内的生成建模。更具体地说,我们考虑以下任务:从一些未知的离散概率分布中给定样品,输出概率高的有效算法,用于从原始分布的良好近似中生成新样本。我们的主要结果是明确构造了一类离散概率分布,在决策性的差异假设下,这些分布可以通过经典的生成建模算法有效地学习,但是我们为其构建了有效的量子学习者。因此,这类分布提供了一个具体的示例,说明了一个生成建模问题,量子学习者比经典学习算法具有可证明的优势。此外,我们讨论了证明经典生成建模硬度结果的技术,以及布尔函数的PAC可学习性与离散概率分布的PAC可学习性之间的关系。

Here we study the comparative power of classical and quantum learners for generative modelling within the Probably Approximately Correct (PAC) framework. More specifically we consider the following task: Given samples from some unknown discrete probability distribution, output with high probability an efficient algorithm for generating new samples from a good approximation of the original distribution. Our primary result is the explicit construction of a class of discrete probability distributions which, under the decisional Diffie-Hellman assumption, is provably not efficiently PAC learnable by a classical generative modelling algorithm, but for which we construct an efficient quantum learner. This class of distributions therefore provides a concrete example of a generative modelling problem for which quantum learners exhibit a provable advantage over classical learning algorithms. In addition, we discuss techniques for proving classical generative modelling hardness results, as well as the relationship between the PAC learnability of Boolean functions and the PAC learnability of discrete probability distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源