论文标题
效果规模判断和决策的视觉推理策略
Visual Reasoning Strategies for Effect Size Judgments and Decisions
论文作者
论文摘要
不确定性可视化通常强调点估计值,以通过视觉比较来支持幅度估计或决策。但是,当强调设计选择时,用户可能会忽略不确定性信息,而误解视觉距离为效果大小的代理。我们从一项关于机械土耳其的混合设计实验中提出了发现,该实验测试了八种不确定性可视化设计:95%的封存间隔,假设的结果图,密度和分数点,每种都没有添加和添加手段。我们发现,增加不确定性可视化的手段对幅度估计和决策的偏见影响很小,与折现不确定性一致。我们还看到,支持最少偏见的效果估计的可视化设计并不支持最佳决策,这表明当图表用户的效果尺寸在不同任务中使用相同的信息时,不一定是相同的。在对用户策略描述的定性分析中,我们发现许多用户会切换策略,并且在存在时不会采用最佳策略。理论上最佳设计的不确定性可视化在实践中可能不是最有效的,因为用户满足启发式方法的方式,提出了通过建模潜在策略的建模来更好地理解可视化有效性的机会。
Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.