论文标题

一个多尺度优化框架,用于使用基于多级PCA的控制空间减少重建二进制图像

A Multiscale Optimization Framework for Reconstructing Binary Images using Multilevel PCA-based Control Space Reduction

论文作者

Koolman, Priscilla M., Bukshtynov, Vladislav

论文摘要

开发和验证了生物医学应用模型的二进制物理特性的最佳重建参数的有效计算方法。该方法包括基于梯度的多尺度优化,通过使用主成分分析(PCA)以及动态控制空间的升级,并降低了多级控制空间。缩小的尺寸控件可在细和粗尺度上互换使用,以积累优化进度并在两个尺度上减轻副作用。通过校准某些参数以增强优化算法的性能来实现灵活性。在两个尺度上获得的基于伴随的梯度提供的控制空间的尺寸降低,这有助于将该算法应用于更高复杂性的模型以及生物医学科学中的广泛问题。该技术显示,仅在二进制图像和计算时间的质量方面,该技术仅优于基于常规梯度的方法。通过电阻抗层析成像(EIT)在应用2D逆问题的应用中测试了完整的计算框架的性能。结果表明,新方法的有效性能及其最大程度地减少假阳性筛查和提高基于EIT程序的整体质量的可能性的高潜力。

An efficient computational approach for optimal reconstructing parameters of binary-type physical properties for models in biomedical applications is developed and validated. The methodology includes gradient-based multiscale optimization with multilevel control space reduction by using principal component analysis (PCA) coupled with dynamical control space upscaling. The reduced dimensional controls are used interchangeably at fine and coarse scales to accumulate the optimization progress and mitigate side effects at both scales. Flexibility is achieved through the proposed procedure for calibrating certain parameters to enhance the performance of the optimization algorithm. Reduced size of control spaces supplied with adjoint-based gradients obtained at both scales facilitate the application of this algorithm to models of higher complexity and also to a broad range of problems in biomedical sciences. This technique is shown to outperform regular gradient-based methods applied to fine scale only in terms of both qualities of binary images and computing time. Performance of the complete computational framework is tested in applications to 2D inverse problems of cancer detection by the electrical impedance tomography (EIT). The results demonstrate the efficient performance of the new method and its high potential for minimizing possibilities for false positive screening and improving the overall quality of the EIT-based procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源