论文标题

精确的肺结节分割,具有详细的表示转移和软面罩监督

Accurate Lung Nodules Segmentation with Detailed Representation Transfer and Soft Mask Supervision

论文作者

Wang, Changwei, Xu, Rongtao, Xu, Shibiao, Meng, Weiliang, Xiao, Jun, Zhang, Xiaopeng

论文摘要

从计算机断层扫描(CT)图像中的准确肺部病变分割对于分析和诊断Covid-19和肺癌等肺部疾病至关重要。然而,肺结节的较小和多样性以及缺乏高质量的标记使准确的肺结分割变得困难。为了解决这些问题,我们首先介绍了一个名为“软面膜”的新颖分割掩码,该面膜具有更丰富,更准确的边缘详细信息描述和更好的可视化,并开发了通用的自动软蒙版注释管道,以相应地处理不同的数据集。然后,提出了一个具有详细表示转移和软面膜监督(DSNET)的新型网络,以将肺结核的输入低分辨率图像处理为高质量的分割结果。我们的DSNET包含一个特殊的细节表示转移模块(DRTM),用于重建详细的表示以减轻肺结核图像的小尺寸,以及带有软膜的对抗性训练框架,以进一步提高细分的准确性。广泛的实验验证了我们的DSNET优于其他最先进的方法,用于精确的肺结分分割,并且在其他准确的医学分割任务中具有强大的概括能力,并具有竞争性的结果。此外,我们提供了一个新的具有挑战性的肺结分段数据集,以进行进一步研究。

Accurate lung lesion segmentation from Computed Tomography (CT) images is crucial to the analysis and diagnosis of lung diseases such as COVID-19 and lung cancer. However, the smallness and variety of lung nodules and the lack of high-quality labeling make the accurate lung nodule segmentation difficult. To address these issues, we first introduce a novel segmentation mask named Soft Mask which has richer and more accurate edge details description and better visualization and develop a universal automatic Soft Mask annotation pipeline to deal with different datasets correspondingly. Then, a novel Network with detailed representation transfer and Soft Mask supervision (DSNet) is proposed to process the input low-resolution images of lung nodules into high-quality segmentation results. Our DSNet contains a special Detail Representation Transfer Module (DRTM) for reconstructing the detailed representation to alleviate the small size of lung nodules images, and an adversarial training framework with Soft Mask for further improving the accuracy of segmentation. Extensive experiments validate that our DSNet outperforms other state-of-the-art methods for accurate lung nodule segmentation and has strong generalization ability in other accurate medical segmentation tasks with competitive results. Besides, we provide a new challenging lung nodules segmentation dataset for further studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源