论文标题

硬温度机械性能和硬tasin涂料的微观结构

High temperature mechanical properties and microstructure of hard TaSiN coatings

论文作者

Monclús, M. A., Yang, L., López-Cabañas, I., Castillo-Rodríguez, M., Zaman, A., Wang, J., Meletis, E. I., González-Arrabal, R., LLorca, J., Molina-Aldareguía, J. M.

论文摘要

使用纳米识别(25c至500c之间)测量反应性磁控溅射的Tasin涂层的室内和高温机械性能。还使用Micropillar分裂方法在相似的温度范围内评估断裂韧性。通过X射线衍射(XRD)和透射电子显微镜(TEM)分析,检查了氮浓度对TASIN涂层不断发展的相位和微观结构的影响。 XRD光谱显示出宽的峰值,六角形$γ$ -TA2N作为主要阶段,Cuxic $δ$ -TAN相对于较高的N含量出现。在500C测试之前和之后,相组合物保持不变。然而,在进行高温测试后,TEM分析显示氧化物表面层的存在,由于残留的氧扩散,厚度降低(从42 nm),n含量减小,这取代了氮形成无定形SIOX。在富含氧化物的表面层的下方,涂层表现出稳定的纳米晶柱微结构。最初,由于硬立方$δ$ -tan相的出现,硬度和断裂韧性随着n含量而增加,最初是由于在晶界和更高的n个含量上形成了无定形的Si-N组织。 500C时的硬度仅降低15%,而裂缝韧性遵循相反的趋势,这是由于温度的可塑性增加。最佳组成原来是TA55SI10N35,在500C时保持了30 GPA的硬度,也是最艰难的。这些观察结果使该系统对于高温应用非常有趣。

Room and high temperature mechanical properties of reactive magnetron sputtered TaSiN coatings were measured using nanoindentation (between 25C and 500C). Fracture toughness was also evaluated at a similar temperature range using the micropillar splitting method. The influence of the nitrogen concentration on the evolving phases and microstructure of the TaSiN coatings, before and after the high temperature testing, were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. XRD spectra showed broad peaks with hexagonal $γ$-Ta2N as the main phase, with the cubic $δ$-TaN phase emerging for higher N contents. Phase composition remained unchanged before and after the 500C tests. However, after the high temperature tests, TEM analysis showed the presence of an oxide surface layer, with a thickness that decreased (from 42 to 15 nm) with N content, due to residual oxygen diffusion, which replaces nitrogen to form amorphous SiOx. Beneath the oxide-rich surface layer, coatings exhibited a stable nanocrystalline columnar microstructure. Hardness and fracture toughness increased with N content, initially due to the formation of an amorphous Si-N tissue at grain boundaries, and for even higher N contents, due to the appearance of the hard cubic $δ$-TaN phase. Hardness at 500C decreased only by 15%, while fracture toughness followed the opposite trend, due to increased plasticity with temperature. The optimum composition turned out to be Ta55Si10N35, which retained a hardness of 30 GPa at 500C, being also the toughest. These observations make this system very interesting for high temperature applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源