论文标题
来自复杂和Quaternionic Grassmannians
Explicit harmonic morphisms and $p$-harmonic functions from the complex and quaternionic Grassmannians
论文作者
论文摘要
我们在经典的紧凑型对称复合物和Quaternionic grassmannians上构建了明确的复合物值$ p $ harmonic功能和谐波形态。我们的施工方法的成分是经典拉普拉斯 - 贝特拉米和所谓的结合性操作员的联合特征。已知的二元性原理意味着这些$ p $ harmonic的功能和谐波形态也会在Riemannian对称的非紧凑型双空间上诱导这种解决方案。
We construct explicit complex-valued $p$-harmonic functions and harmonic morphisms on the classical compact symmetric complex and quaternionic Grassmannians. The ingredients for our construction method are joint eigenfunctions of the classical Laplace-Beltrami and the so called conformality operator. A known duality principle implies that these $p$-harmonic functions and harmonic morphisms also induce such solutions on the Riemannian symmetric non-compact dual spaces.