论文标题

通过节点采样的流行阈值可扩展估计

Scalable Estimation of Epidemic Thresholds via Node Sampling

论文作者

Dasgupta, Anirban, Sengupta, Srijan

论文摘要

可以通过社交联系网络将传染性或传染性疾病从一个人传播到另一个人。在当今相互联系的全球社会中,这种传染过程可能会引起全球公共卫生危害,这是持续的19日大流行的例证。因此,从统计推断的角度研究了传染性疾病的网络trans序列是非常实际的相关性。网络上传染过程的重要且广泛研究的边界条件是所谓的流行阈值。流行病阈值在确定引入社会接触网络的病原体是否会导致流行病或死亡。在本文中,我们从统计网络推断的角度研究了流行阈值。我们确定了由于流行阈值的高计算和采样复杂性引起的两个主要挑战。我们开发了两种统计准确和计算上有效的近似技术,以解决Chung-Lu建模框架下的这些问题。第二个基于随机步入采样的近似值进一步享有需要数据消失的小部分节点的优势。我们为这两种方法建立了理论保证,并证明了它们的经验优势。

Infectious or contagious diseases can be transmitted from one person to another through social contact networks. In today's interconnected global society, such contagion processes can cause global public health hazards, as exemplified by the ongoing Covid-19 pandemic. It is therefore of great practical relevance to investigate the network trans-mission of contagious diseases from the perspective of statistical inference. An important and widely studied boundary condition for contagion processes over networks is the so-called epidemic threshold. The epidemic threshold plays a key role in determining whether a pathogen introduced into a social contact network will cause an epidemic or die out. In this paper, we investigate epidemic thresholds from the perspective of statistical network inference. We identify two major challenges that are caused by high computational and sampling complexity of the epidemic threshold. We develop two statistically accurate and computationally efficient approximation techniques to address these issues under the Chung-Lu modeling framework. The second approximation, which is based on random walk sampling, further enjoys the advantage of requiring data on a vanishingly small fraction of nodes. We establish theoretical guarantees for both methods and demonstrate their empirical superiority.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源