论文标题

关于$ n $循环排列的构造

On the constructions of $n$-cycle permutations

论文作者

Chen, Yuting, Wang, Liqi, Zhu, Shixin

论文摘要

任何排列多项式都是$ n $ cycle置换。当$ n $是一个特定的小正整数时,可以获得有效的排列,例如互动,三循环排列和四循环置换。这些排列在密码学和编码理论中具有重要的应用。受AGW标准的启发,我们提出了针对$ n $ cycle排列的标准,该标准主要是$ x^rh(x^s)$的形式。然后,我们提出了统一的构造方法,包括递归方式和这种形式的$ n $循环排列的环形方法。我们通过构建具有较高索引的三类显式三环排列和两类$ n $ cycle-cycle置换率,来证明我们的方法。

Any permutation polynomial is an $ n $-cycle permutation. When $n$ is a specific small positive integer, one can obtain efficient permutations, such as involutions, triple-cycle permutations and quadruple-cycle permutations. These permutations have important applications in cryptography and coding theory. Inspired by the AGW Criterion, we propose criteria for $ n $-cycle permutations, which mainly are of the form $ x^rh(x^s) $. We then propose unified constructing methods including recursive ways and a cyclotomic way for $ n $-cycle permutations of such form. We demonstrate our approaches by constructing three classes of explicit triple-cycle permutations with high index and two classes of $ n $-cycle permutations with low index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源