论文标题

杂交深度学习高斯糖尿病性视网膜病变诊断和不确定性定量过程

Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification

论文作者

Toledo-Cortés, Santiago, De La Pava, Melissa, Perdómo, Oscar, González, Fabio A.

论文摘要

糖尿病性视网膜病(DR)是糖尿病的微血管并发症之一,它仍然是全球失明的主要原因之一。基于卷积神经网络的计算模型代表使用眼底图像自动检测DR的最新技术。当前的大多数工作将此问题作为二进制分类任务解决。但是,包括不确定性的等级估计和预测量化可能会增加模型的鲁棒性。在本文中,提出了用于DR诊断和不确定性定量的混合深度学习高斯过程方法。该方法结合了深度学习的代表力,并能够从高斯流程模型的小数据集中概括。结果表明,预测中的不确定性量化可改善该方法作为诊断支持工具的解释性。复制实验的源代码可在https://github.com/stoledoc/dlgp-dr-diarngnosis上公开获得。

Diabetic Retinopathy (DR) is one of the microvascular complications of Diabetes Mellitus, which remains as one of the leading causes of blindness worldwide. Computational models based on Convolutional Neural Networks represent the state of the art for the automatic detection of DR using eye fundus images. Most of the current work address this problem as a binary classification task. However, including the grade estimation and quantification of predictions uncertainty can potentially increase the robustness of the model. In this paper, a hybrid Deep Learning-Gaussian process method for DR diagnosis and uncertainty quantification is presented. This method combines the representational power of deep learning, with the ability to generalize from small datasets of Gaussian process models. The results show that uncertainty quantification in the predictions improves the interpretability of the method as a diagnostic support tool. The source code to replicate the experiments is publicly available at https://github.com/stoledoc/DLGP-DR-Diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源