论文标题

对位置偏差对情绪Causeextraction的影响的实验研究

An Experimental Study of The Effects of Position Bias on Emotion CauseExtraction

论文作者

Ding, Jiayuan, Kejriwal, Mayank

论文摘要

情绪导致提取(ECE)旨在在注释情绪关键词后从文档中识别情感原因。已经提出了一些基线来解决此问题,例如基于规则的,基于常识和机器学习方法。但是,我们表明,与基准相比,不需要观察文本的简单随机选择方法不需要观察文本的性能。我们仅利用相对于情感原因的位置信息来实现这一目标。由于单独的位置信息而没有观察到文本会导致更高的F量表,因此我们发现了ECE单流派Sina-News基准的偏见。进一步的分析表明,基准中存在情感原因位置的不平衡,大部分原因条款紧接在中央情感条款之前。我们从语言角度研究了偏见,并表明使用位置信息的当前最新深度学习模型的高精度仅在包含这种位置偏见的数据集中才有明显。当引入具有平衡位置分布的数据集时,准确性会大大降低。因此,我们得出的结论是,这种基准中的天生偏见导致ECE中这些深度学习模型的高精度。我们希望本文中的案例研究既提出了一个警示性的课程,也可以提出进一步研究的模板,以解释深度学习模型的优越拟合,而无需检查偏见。

Emotion Cause Extraction (ECE) aims to identify emotion causes from a document after annotating the emotion keywords. Some baselines have been proposed to address this problem, such as rule-based, commonsense based and machine learning methods. We show, however, that a simple random selection approach toward ECE that does not require observing the text achieves similar performance compared to the baselines. We utilized only position information relative to the emotion cause to accomplish this goal. Since position information alone without observing the text resulted in higher F-measure, we therefore uncovered a bias in the ECE single genre Sina-news benchmark. Further analysis showed that an imbalance of emotional cause location exists in the benchmark, with a majority of cause clauses immediately preceding the central emotion clause. We examine the bias from a linguistic perspective, and show that high accuracy rate of current state-of-art deep learning models that utilize location information is only evident in datasets that contain such position biases. The accuracy drastically reduced when a dataset with balanced location distribution is introduced. We therefore conclude that it is the innate bias in this benchmark that caused high accuracy rate of these deep learning models in ECE. We hope that the case study in this paper presents both a cautionary lesson, as well as a template for further studies, in interpreting the superior fit of deep learning models without checking for bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源