论文标题
宏观皮质动力学:在源空间静止状态脑电图中,空间不相关但具有暂时性的富康俱乐部组织
Macroscopic cortical dynamics: Spatially uncorrelated but temporally coherent rich-club organisations in source-space resting-state EEG
论文作者
论文摘要
神经元种群的同步振荡支持静止状态皮质活性。最近的研究表明,静止状态的功能连通性不是静态的,而是表现出复杂的动力学。皮质活性的复杂动力学基础的机制尚未得到很好的特征。在这里,我们将奇异值分解(SVD)直接应用于源型脑电图(EEG),以表征静止状态功能连接性的时空模式的动力学。我们发现,静止状态功能连接性的变化与默认模式网络,显着性网络和电动机网络的“ Rich-Club组织”的独特复杂拓扑特征相关联。显着性网络的Rich-Club拓扑表明,腹外侧前额叶皮层和前岛之间的功能连通性更大,而默认模式网络的Rich-Club拓扑表则揭示了额骨 - 顶端和后皮层之间的双边功能连接性。这些源空间网络模式的动力学基础动力学的光谱分析表明,静息状态皮层活动表现出独特的动力学状态,其内在表达式包含alpha-beta频段中的快速振荡,并且具有$ <0.1 $ hz的时间尺度的信封信号。因此,我们的发现表明,源重建的脑电图的多元特征分类是一种可靠的计算技术,旨在探索如何在不同频率下振荡的静息状态皮质活性的时空特征的动力学。
Synchronous oscillations of neuronal populations support resting-state cortical activity. Recent studies indicate that resting-state functional connectivity is not static, but exhibits complex dynamics. The mechanisms underlying the complex dynamics of cortical activity have not been well characterised. Here, we directly apply singular value decomposition (SVD) in source-reconstructed electroencephalography (EEG) in order to characterise the dynamics of spatiotemporal patterns of resting-state functional connectivity. We found that changes in resting-state functional connectivity were associated with distinct complex topological features, "Rich-Club organisation", of the default mode network, salience network, and motor network. Rich-club topology of the salience network revealed greater functional connectivity between ventrolateral prefrontal cortex and anterior insula, whereas Rich-club topologies of the default mode networks revealed bilateral functional connectivity between fronto-parietal and posterior cortices. Spectral analysis of the dynamics underlying Rich-club organisations of these source-space network patterns revealed that resting-state cortical activity exhibit distinct dynamical regimes whose intrinsic expressions contain fast oscillations in the alpha-beta band and with the envelope-signal in the timescale of $<0.1$ Hz. Our findings thus demonstrated that multivariate eigen-decomposition of source-reconstructed EEG is a reliable computational technique to explore how dynamics of spatiotemporal features of the resting-state cortical activity occur that oscillate at distinct frequencies.