论文标题
纳米蒙德量子传感器的固态激光制冷
Solid-state laser refrigeration of nanodiamond quantum sensors
论文作者
论文摘要
Diamond的负荷氮空位(NV $^ - $)中心是一个非凡的光学量子传感器,用于一系列应用,包括纳米级温度测定法,磁力测定法,单光子生成,量子计算和通信。但是,迄今为止,使用NV $^ - $中心的这些技术的性能受到了由于有害的光热加热而导致NV $^ - $中心光发光的热诱导的光谱徘徊的限制。在这里,我们证明固态激光制冷可用于在大气和\ textIt {in Vacuo}条件下,可以对氮空位掺杂的纳米座(NV $^ - $:nd)量子传感器进行快速(MS)光学温度控制。纳米原子座连接到陶瓷微晶体上,包括10 \%ytterbium掺杂的yttrium lithtrium氟化锂(YB:liyf $ _4 $)和van der waals键合的氟化钠(yb:yb:nayf $ _4 $)。通过聚焦的1020 nm激光束激发的向上转换红外光子的有效发射来冷却氟化物晶体。在大气压下,热传递到陶瓷微晶体将相邻的NV $^ - $:NDS冷却10和27 K,$ \ sim $ 10 $^{ - 3} $ torr。 NV $^ - $:NDS的温度是使用Debye-Waller因子(DWF)温度计和光学检测到的磁共振(ODMR)测量的,这与激光冷却的陶瓷微晶的温度一致。通过调节1020 nm激光辐照度来实现NV $^{ - } $ ZERO-ZERO-PHONON-LINE(ZPL)的热诱导光谱徘徊的稳定。使用光学冷却的微晶进行了NV $^ - $:NDS的冷却,为快速反馈控制的各种纳米级量子材料提供了新的可能性。
The negatively-charged nitrogen vacancy (NV$^-$) centre in diamond is a remarkable optical quantum sensor for a range of applications including, nanoscale thermometry, magnetometry, single photon generation, quantum computing, and communication. However, to date the performance of these techniques using NV$^-$ centres has been limited by the thermally-induced spectral wandering of NV$^-$ centre photoluminescence due to detrimental photothermal heating. Here we demonstrate that solid-state laser refrigeration can be used to enable rapid (ms) optical temperature control of nitrogen vacancy doped nanodiamond (NV$^-$:ND) quantum sensors in both atmospheric and \textit{in vacuo} conditions. Nanodiamonds are attached to ceramic microcrystals including 10\% ytterbium doped yttrium lithium fluoride (Yb:LiYF$_4$) and sodium yttrium fluoride (Yb:NaYF$_4$) by van der Waals bonding. The fluoride crystals were cooled through the efficient emission of upconverted infrared photons excited by a focused 1020 nm laser beam. Heat transfer to the ceramic microcrystals cooled the adjacent NV$^-$:NDs by 10 and 27 K at atmospheric pressure and $\sim$10$^{-3}$ Torr, respectively. The temperature of the NV$^-$:NDs was measured using both Debye-Waller factor (DWF) thermometry and optically detected magnetic resonance (ODMR), which agree with the temperature of the laser cooled ceramic microcrystal. Stabilization of thermally-induced spectral wandering of the NV$^{-}$ zero-phonon-line (ZPL) is achieved by modulating the 1020 nm laser irradiance. The demonstrated cooling of NV$^-$:NDs using an optically cooled microcrystal opens up new possibilities for rapid feedback-controlled cooling of a wide range of nanoscale quantum materials.