论文标题

动态纹理分析用于在视频序列中检测假面的动态纹理分析

Dynamic texture analysis for detecting fake faces in video sequences

论文作者

Bonomi, Mattia, Pasquini, Cecilia, Boato, Giulia

论文摘要

在过去的几年中,涉及人类角色的操纵多媒体内容的创建空前的现实主义已达到,呼吁自动化技术以暴露图像和视频中的合成面孔。这项工作探讨了视频信号的时空纹理动力学的分析,目的是表征和区分真实和假序列。我们建议对多个时间段的联合分析建立二进制决策,与以前的方法相反,以利用空间和时间维度的质地动力学。这是通过在三个正交平面(LDP-TOP)上使用局部导数模式来实现的,这是一种紧凑的特征表示,是检测面部欺骗攻击的重要资产。对操纵视频的最先进数据集的实验分析表明,这种描述符在分离真实和假序列方面的歧视力,并识别所使用的创建方法。使用线性支持向量机(SVM),尽管复杂性较低,但在伪造内容检测的先前提出的深层模型中产生了可比的性能。

The creation of manipulated multimedia content involving human characters has reached in the last years unprecedented realism, calling for automated techniques to expose synthetically generated faces in images and videos. This work explores the analysis of spatio-temporal texture dynamics of the video signal, with the goal of characterizing and distinguishing real and fake sequences. We propose to build a binary decision on the joint analysis of multiple temporal segments and, in contrast to previous approaches, to exploit the textural dynamics of both the spatial and temporal dimensions. This is achieved through the use of Local Derivative Patterns on Three Orthogonal Planes (LDP-TOP), a compact feature representation known to be an important asset for the detection of face spoofing attacks. Experimental analyses on state-of-the-art datasets of manipulated videos show the discriminative power of such descriptors in separating real and fake sequences, and also identifying the creation method used. Linear Support Vector Machines (SVMs) are used which, despite the lower complexity, yield comparable performance to previously proposed deep models for fake content detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源