论文标题
热和超热的木星气氛之间的过渡
A transition between the hot and the ultra-hot Jupiter atmospheres
论文作者
论文摘要
[删节]系外星大气氛领域的一个关键假设是大气热结构的趋势,并具有行星平衡温度。我们在这里探讨了这一趋势,并报告了对热和超热木星之间近红外(NIR)大气发射中过渡的首次统计检测。我们使用次要日食观测来测量这种过渡,并将这种现象解释为大气特性的变化,更具体地说是从非反向过渡到倒置热谱的过渡方面。我们检查了以3.6μm和4.5μm测量的78个热木星的样品,用Spitzer红外阵列摄像头(IRAC)测量了4.5μm。我们测量了数据与黑体的偏差,我们将其定义为观察到的4.5μm食食深度与基于3.6μm的亮度温度在此波长下预期的差异。我们研究3.6和4.5μm之间的偏差如何随平衡温度和传入恒星照射而随着理论预测而变化。我们在1660 +/- 100 K的零反照率中观察到的热木星种群的发射光谱中揭示了明显的跃迁,完全重新分布平衡温度。我们发现,较热的系外行星在4.5μm时具有更热的日子,而3.6μm的速度为4.5μm,这表现为行星发射能力的指数增加,并具有恒星的无法隔离。我们建议测得的过渡是由于最热行星大气中温度反转的形成,因此在发射中看到一氧化碳。这些热反转可能是由于光学和/或缺乏冷却物种的原子和分子物种的存在引起的。我们发现,热木星的种群在统计学上不散发高C/O行星(C/O> = 0.85)。
[Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-infrared (NIR) atmospheric emission between hot and ultra-hot Jupiters. We measure this transition using secondary eclipse observations and interpret this phenomenon as changes in atmospheric properties, and more specifically in terms of transition from non-inverted to inverted thermal profiles. We examine a sample of 78 hot Jupiters with secondary eclipse measurements at 3.6 μm and 4.5 μm measured with Spitzer Infrared Array Camera (IRAC). We measure the deviation of the data from the blackbody, which we define as the difference between the observed 4.5 μm eclipse depth and that expected at this wavelength based on the brightness temperature measured at 3.6 μm. We study how the deviation between 3.6 and 4.5 μm changes with theoretical predictions with equilibrium temperature and incoming stellar irradiation. We reveal a clear transition in the observed emission spectra of the hot Jupiter population at 1660 +/- 100 K in the zero albedo, full redistribution equilibrium temperature. We find the hotter exoplanets have even hotter daysides at 4.5 μm compared to 3.6 μm, which manifests as an exponential increase in the emitted power of the planets with stellar insolation. We propose that the measured transition is a result of seeing carbon monoxide in emission due to the formation of temperature inversions in the atmospheres of the hottest planets. These thermal inversions could be caused by the presence of atomic and molecular species with high opacities in the optical and/or the lack of cooling species. We find that the population of hot Jupiters statistically disfavors high C/O planets (C/O>= 0.85).