论文标题
K-Majority动力学的相位过渡中有偏见的通信模型
Phase Transition of the k-Majority Dynamics in Biased Communication Models
论文作者
论文摘要
考虑一个图表,其中$ n $节点中的每个都在状态$ \ MATHCAL {r} $或$ \ MATHCAL {B} $中。在此,我们分析了\ emph {同步$ k $ -mjority dynamics},在每个离散的时间弹性节点中,同时均匀地对$ k $ knighbors进行了均匀地进行均匀替换,并在示例中的节点中采用多数状态(随机打破均匀的节点)。与以前的工作不同,我们研究了\ emph {维持$ \ Mathcal {r} $多数}中$ k $ -Majority的鲁棒性,当动态遭受两种形式的\ emph {bias}对状态$ \ Mathcal {b} $时。偏见模拟了一种外部代理,试图通过更改节点之间的通信来颠覆初始多数,每回合成功$ p $的可能性:以偏见的第一种形式,代理试图通过传输状态$ \ MATHCAL {b} $来改变通信链接;在第二种形式的偏见中,代理商试图通过使$ \ Mathcal {b} $更新来直接损坏节点。我们的主要结果显示了两种形式的偏见中的\ emph {尖锐的相变}。通过考虑每个节点具有概率$ q \ in(\ frac {1} {2},1] $的初始配置,处于状态$ \ Mathcal {r} $中,我们证明,对于每个$ k \ geq3 $ $ n^{ω(1)} $ rounds,如果$ p <p <p <p <p <p_,q}^*$,或$ o(1)$(1)$ rounds,如果$ p> p> p> p> p> p> p_ {k,q}^*$,而是$ k <3 $,则没有观察到$ o($ o($ o(o(p))。
Consider a graph where each of the $n$ nodes is either in state $\mathcal{R}$ or $\mathcal{B}$. Herein, we analyze the \emph{synchronous $k$-Majority dynamics}, where in each discrete-time round nodes simultaneously sample $k$ neighbors uniformly at random with replacement and adopt the majority state among those of the nodes in the sample (breaking ties uniformly at random). Differently from previous work, we study the robustness of the $k$-Majority in \emph{maintaining a $\mathcal{R}$ majority}, when the dynamics is subject to two forms of \emph{bias} toward state $\mathcal{B}$. The bias models an external agent that attempts to subvert the initial majority by altering the communication between nodes, with a probability of success $p$ in each round: in the first form of bias, the agent tries to alter the communication links by transmitting state $\mathcal{B}$; in the second form of bias, the agent tries to corrupt nodes directly by making them update to $\mathcal{B}$. Our main result shows a \emph{sharp phase transition} in both forms of bias. By considering initial configurations in which every node has probability $q \in (\frac{1}{2},1]$ of being in state $\mathcal{R}$, we prove that for every $k\geq3$ there exists a critical value $p_{k,q}^*$ such that, with high probability, the external agent is able to subvert the initial majority either in $n^{ω(1)}$ rounds, if $p<p_{k,q}^*$, or in $O(1)$ rounds, if $p>p_{k,q}^*$. When $k<3$, instead, no phase transition phenomenon is observed and the disruption happens in $O(1)$ rounds for $p>0$.