论文标题
随着用户的考虑,不断发展的上下文感知的推荐系统
Evolving Context-Aware Recommender Systems With Users in Mind
论文作者
论文摘要
上下文感知的推荐系统(CARS)应用了用户上下文的感知和分析以提供个性化服务。上下文信息可以从传感器中驱动,以提高建议的准确性。但是,从用户的角度来看,生成准确的建议还不足以构成一个有用的系统,因为某些上下文信息可能会导致不同的问题,例如消耗用户的电池,隐私问题等。添加高维上下文信息可能会增加模型的维度和稀疏性。先前的研究表明,通过使用域知识选择最合适的上下文信息来减少上下文信息的数量。另一个解决方案是将其压缩到较密集的潜在空间中,从而破坏向用户解释推荐项目的能力,并破坏用户的信任。在本文中,我们提出了一种方法,可以选择上下文信息的低维基集并将其明确合并到汽车中。具体而言,我们提出了一种基于遗传算法(GA)的新型特征选择算法,该算法的表现优于SOTA尺寸还原汽车算法,提高了建议的准确性和解释性,并允许控制用户方面(例如隐私和电池消耗)。此外,我们通过学习多个深层感知模型并在其上应用堆叠技术来利用沿进化过程生成的顶级子集,从而提高准确性,同时保持在显式空间。我们在两个由智能手机驱动的高维情境感知数据集上评估了我们的方法。对我们的结果的实证分析验证了我们所提出的方法优于SOTA CARS模型,同时提高了对用户的透明度和解释性。
A context-aware recommender system (CARS) applies sensing and analysis of user context to provide personalized services. The contextual information can be driven from sensors in order to improve the accuracy of the recommendations. Yet, generating accurate recommendations is not enough to constitute a useful system from the users' perspective, since certain contextual information may cause different issues, such as draining the user's battery, privacy issues, and more. Adding high-dimensional contextual information may increase both the dimensionality and sparsity of the model. Previous studies suggest reducing the amount of contextual information by selecting the most suitable contextual information using a domain knowledge. Another solution is compressing it into a denser latent space, thus disrupting the ability to explain the recommendation item to the user, and damaging users' trust. In this paper we present an approach for selecting low-dimensional subsets of the contextual information and incorporating them explicitly within CARS. Specifically, we present a novel feature-selection algorithm, based on genetic algorithms (GA), that outperforms SOTA dimensional-reduction CARS algorithms, improves the accuracy and the explainability of the recommendations, and allows for controlling user aspects, such as privacy and battery consumption. Furthermore, we exploit the top subsets that are generated along the evolutionary process, by learning multiple deep context-aware models and applying a stacking technique on them, thus improving the accuracy while remaining at the explicit space. We evaluated our approach on two high-dimensional context-aware datasets driven from smartphones. An empirical analysis of our results validates that our proposed approach outperforms SOTA CARS models while improving transparency and explainability to the user.